
Please cite this article in press as: de Vasconcelos, J. B., et al. The application of knowledge management to software evolution.
International Journal of Information Management (2016), http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.005

ARTICLE IN PRESSG Model
JJIM-1533; No. of Pages 8

International Journal of Information Management xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

International Journal of Information Management

jou rna l h om epage: www.elsev ier .com/ locate / i j in fomgt

The application of knowledge management to software evolution

José Braga de Vasconcelos a,∗, Chris Kimble b, Paulo Carreteiro a, Álvaro Rocha c

a Knowledge Management and Software Engineering Research Group, Universidade Atlântica, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena,
Portugal
b KEDGE Business School Rue Antoine Bourdelle, Domaine de Luminy, BP 921 13288 Marseille, Cedex 9, France
c Department of Informatics Engineering, Universidade de Coimbra, Pólo II—Pinhal de Marrocos, 3030-290 Coimbra, Portugal

a r t i c l e i n f o

Article history:
Received 7 February 2016
Received in revised form 1 April 2016
Accepted 23 April 2016
Available online xxx

Keywords:
Software engineering
Knowledge management
Collaborative work
Software maintenance
Software development process

a b s t r a c t

In complex software development projects, consistent planning and communication between the stake-
holders is crucial for effective collaboration across the different stages in software construction. Taking
the view of software development and maintenance as being part of the broader phenomenon of soft-
ware evolution, this paper argues that the adoption of knowledge management practices in software
engineering would improve both software construction and more particularly software maintenance.
The research work presents a guidance model for both areas: knowledge management and software
engineering, combining insights across corporate software projects as a means of evaluating the effects
on people and organization, technology, workflows and processes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The “software crisis” (the claim that software development
projects are always over budget, behind schedule, and unreliable)
has been a feature of software engineering since the early 1970s.
The cost of maintaining software has historically, and continues to
be, seen as a major component of the cost of software engineer-
ing projects, with estimates ranging from 50% to 90% of the total
cost of a project (Koskinen, 2003). In this article, we will look at
the application of knowledge management (KM) techniques to the
problems of producing reliable, cost efficient software in general
and the problems of software maintenance in particular. To do this
we adopt the position of Lehman (Lehman, 1979, 1996; Lehman
& Ramil, 2003) that software maintenance simply one aspect of
the broader and inescapable phenomenon of software evolution.
Consequently, in line with Anquetil et al. (2007), we do not claim
that the knowledge requirements for software maintenance are sig-
nificantly different from those of software development, but we
do argue that the nature of software maintenance poses certain
difficulties for the management of that knowledge.

Software maintenance is an activity based around maintaining
what are essentially legacy systems, with all that entails. Software

∗ Corresponding author.
E-mail addresses: jose.braga.vasconcelos@uatlantica.pt (J.B. de Vasconcelos),

chris.kimble@kedgebs.com (C. Kimble), pcarreteiro@uatlantica.pt (P. Carreteiro),
amrocha@dei.uc.pt (Á. Rocha).

development may take several months, but software maintenance
may last for many years. Similarly, the working environment
of maintenance engineers (e.g. the programming language, the
database management system, the data model, the system archi-
tecture) have all been dictated by decisions that were taken based
on constraints that may have changed radically, forcing them to
work with obsolete tools and techniques and to deal with various
forms of undocumented fixes and work-arounds. While a software
development a developer will have immediate access to the design
requirements of the system, maintenance engineers may only have
a vague knowledge of those requirements (Anquetil, de Oliveira, de
Sousa, & Dias, 2007).

From the description above it might appear that much of the
knowledge needed to maintain systems, such as a deep understand-
ing of the domain and the problems that are encountered there,
could best be described as tacit knowledge, which is notoriously
difficult to capture and store (Nonaka & von Krogh, 2009). Never-
theless, the approach we propose in this article is one based on
the storage and retrieval of codified knowledge from a database.
Our assertion is that he problem essentially that of a “lost code-
book” (Cowan, David, & Foray, 2000) which states that if knowledge
has already been articulated and has been recorded in some form
then, even although the knowledge that underpins the original
categorization has been ‘lost’, it should, in principle, be possible
to recover it. The framework we describe here uses this approach
by back-flushing relevant information from the documentation of
the earlier segments of the systems development lifecycle and

http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.005
0268-4012/© 2016 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.ijinfomgt.2016.05.005
dx.doi.org/10.1016/j.ijinfomgt.2016.05.005
http://www.sciencedirect.com/science/journal/02684012
http://www.elsevier.com/locate/ijinfomgt
mailto:jose.braga.vasconcelos@uatlantica.pt
mailto:chris.kimble@kedgebs.com
mailto:pcarreteiro@uatlantica.pt
mailto:amrocha@dei.uc.pt
dx.doi.org/10.1016/j.ijinfomgt.2016.05.005

Please cite this article in press as: de Vasconcelos, J. B., et al. The application of knowledge management to software evolution.
International Journal of Information Management (2016), http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.005

ARTICLE IN PRESSG Model
JJIM-1533; No. of Pages 8

2 J.B. de Vasconcelos et al. / International Journal of Information Management xxx (2016) xxx–xxx

making it available to those who are later tasked with maintaining
the system.

The rest of the article is structured as follows. We begin by
examining the software engineering and the nature of software
maintenance in greater detail. We do this mainly by drawing on
the work of Lehman (Lehman, 1979, 1996; Lehman & Ramil, 2003)
on software evolution and examining its implications for KM. We
follow this by examining the KM strategies that could be used to
address this problem. Here we draw a distinction between the type
of knowledge needed to be an effective systems maintenance engi-
neer and the knowledge needed to maintain specific systems, and
focus on the issue of how a strategy of codification could best be
used to deal with the latter. Then we examine the specific needs
of knowledge management systems (KMS) and ask, “What kind
of KMS is needed to help software maintenance knowledge work-
ers?F̈ollowing this, we present the MIMIR Framework and end with
some conclusions regarding our research’s key focus and related
contributions.

2. Software engineering and software maintenance

The origin of software engineering lies in the search for solutions
to the problems associated with software development that began
to emerge in the 1960s. The term ‘software crisis’, which became
a shorthand for the observation that software seemed to take too
long to develop and required extensive (and expensive) modifica-
tions after delivery, was coined in first NATO Software Engineering
Conference in 1968 (Bryant, 2000). In time, techniques and tech-
nologies, such as high-level programming languages and structured
design methodologies, were developed to make the production of
software more efficient and less error prone but, despite this, main-
tenance cost seemed to remain stubbornly high. Lehman (1980)
claims that in 1977, 70% of the total cost of a system was accounted
for by maintenance, almost 20 years later Pigoski (1996) was still
able claim that up to 80% of the cost of information systems was
down to maintenance. Although there is considerable scope for
argument about exactly how costs should be measured, Lehman
and others argue that, to some extent, the concern about mainte-
nance cost is misplaced and that the whole notion of maintenance
as it is applied to software needs to be re-evaluated.

Lehman (1980) observes that in mechanical systems, the term
maintenance is generally used to describe the restoration of some-
thing to its former state: deterioration has occurred due to wear
and tear, and is corrected by the repair or replacement of a com-
ponent. However, software does not suffer from wear and tear
and continues to function in the same way until it is changed;
maintenance therefore involves a change away from the previous
state rather than a restoration of it. Similarly, in mechanical sys-
tems, major changes to a product are only achieved by redesign,
retooling, and the construction of an entirely new model, whereas
with programs changes can be superimposed on an existing system
without the need to redesign the system as a whole. Software only
changes when people decide that the current behavior is wrong or
inappropriate; furthermore, such problems can be identified and
corrected in any phase of the life cycle, not only in the so called
maintenance phase. Change is intrinsic to the nature of software
and consequently it more accurate to talk of ‘software evolution’
than of software development or maintenance. This of course is not
an argument that software maintenance costs should be ignored
but rather that the focus should be on reducing the unit cost of
change and minimizing the rate of increase as the system ages.

Although many of Lehman’s arguments are abstract and the-
oretical, much of his work is based on first hand observation of
software projects; this becomes particularly relevant when consid-
ering how development and maintenance are actually carried out.

For Lehman software evolution is the process of keeping software
synchronized with its social, legal, and organizational environment,
consequently, the impact of managerial and organizational arte-
facts such as the partitioning of software development into the
phases of the systems lifecycle assume a crucial importance.

Managers typically tend to concentrate on the successful com-
pletion of their current projects, as their success is usually judged by
immediately observable results such as cost and timeliness. Man-
agerial strategies will therefore inevitably be dominated by a desire
to achieve a local outcome with visible short-term benefits; they
will not take into account long-term effects which cannot be eas-
ily predicted and whose cost cannot be accurately assessed. Thus,
the temptation is to make changes in an ad-hoc fashion, one upon
another, rather than group them together and implement them in
coherent manner. During development, this tendency is counter-
acted by partitioning the work into distinct phases, but systems
maintenance is often event driven and reactive; changes may be
localized and tailored to meet specific needs, while recommended
patches and system updates may be ignored or only partially imple-
mented leading to unforeseen problems later on.

The effect of these observations in terms of KM is three fold.
Firstly, the apparent compatibility between the types of knowl-

edge used in systems development and systems maintenance
appears to bode well for KM as it implies that one knowledge
schema might be able to be used for both activities, however, the
practice of systems development and maintenance tends to under-
mine this view.

Secondly, the piecemeal, reactive, and sometimes chaotic nature
of software maintenance is problematical for an approach based on
the systematic capture, storage, and reuse of knowledge. While sys-
tems development methodologies provide a centralized discipline
to structure and aid the documentation what happened during the
creation of the software, maintenance is often carried out indepen-
dently, and under pressure, at the local level; capturing knowledge
for later reuse is likely to be seen as a low priority.

Finally, from a more theoretical viewpoint, while it is undoubt-
edly of value to the effective management of systems development,
dividing systems development into phases inevitably introduces a
discontinuity into the process. Systems development becomes a
progressive series of mappings of needs in the real world onto a set
of specifications for actions to be performed by a machine (Blum
& Sigillito, 1985; Lyytinen, 1987). As Samuelis (2008) notes, each
discontinuity represents a new level of abstraction, and with each
level of abstraction, knowledge is lost: design decisions that were
taken at higher levels cannot be reconstructed or predicted from the
abstractions that exist at lower levels. This problem exists regard-
less of approach taken: structured methods such as SSADM tend to
abstract away process specific details, while object oriented meth-
ods tend to abstract away implementation specific details (King &
Kimble, 2004).

3. Knowledge management for software maintenance

From the forgoing discussion, we can see that using KM for
software maintenance appear to be viable as long as (a) the exigen-
cies of the task of software maintenance are respected and (b) the
knowledge relating to previous phases in the systems development
can be made available. How might this be achieved?

The literature on KM tends to divide along two lines; the
first focuses on capturing ‘explicit’ knowledge and storing it in
repositories for later reuse, whereas the second focuses on people
and communities as sources of ‘tacit’ knowledge. The distinction
between these two approaches and problematical nature of the
relation between tacit and explicit knowledge has been explored
elsewhere (Hildreth & Kimble, 2002; Kimble, 2013). Although there

dx.doi.org/10.1016/j.ijinfomgt.2016.05.005

Download English Version:

https://daneshyari.com/en/article/5110774

Download Persian Version:

https://daneshyari.com/article/5110774

Daneshyari.com

https://daneshyari.com/en/article/5110774
https://daneshyari.com/article/5110774
https://daneshyari.com

