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a b s t r a c t

The edge-based smoothed finite element method (ES-FEM) was recently proposed to improve the perfor-
mance of linearly triangular finite element models for mechanics problems. Such a good performance is
attributed to the right amount softening induced by the edge-based smoothing operation. In this paper,
we propose an improved formulation of the ES-FEM so that the bES-FEM can be further softened becom-
ing volumetric locking free and hence works well also incompressible or nearly incompressible problems.
The improved formulation uses the usual piecewise linear displacements but is supplemented with a
cubic bubble function in triangular elements, which induces further softening to the bilinear form allow-
ing the weakened weak (W2) procedure to search for a solution satisfying the divergence-free conditions.
The smoothed strains are evaluated based on smoothing domains associated with edges of the adjacent
elements as in the ES-FEM. The divergence-free condition of the bES-FEM is verified via detailed eigen-
value analyses. Several numerical examples are provided to show the effectiveness and reliability of
the present method. We also show numerically that the present element is insensitive to mesh distortion
and is superior to the bubble finite element (MINI element) in the incompressible limit.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays the finite element method (FEM) has become a very
powerful and reliable tools for numerical simulations in science
and engineering [1–4]. In many practical engineering applications,
lower-order finite elements based on linear triangular elements
(FEM-T3) are often preferred due to its computational simplicity,
efficiency, less demand on the smoothness of the solution, adapta-
tion to complicated geometry, and easy for adaptive mesh refine-
ments for solutions of desired accuracy. However, the FEM-T3
exhibits a poor performance due to certain inherent drawbacks:
(1) overestimation of stiffness matrix [1] especially in the incom-
pressible limit and bending dominated behavior; (2) poor perfor-
mance with distorted meshes; (3) poor accuracy for stresses.
There are many methods to overcome these shortcomings in the
literature [1,2]. To solve the volumetric locking problems, numer-
ous studies were performed using the drilling freedoms formula-
tions [5–8], u/p mixed formulations [1–3,9], enhanced assumed
strain (EAS) modes [8,10,11], B-bar methods [2], reduced integra-
tion stabilizations [12–16], two-field mixed stress elements [4],
variational multiscale approaches [17,18], average nodal

techniques [19–23], just mention to a few. In addition, alternative
approaches [24–28] related to meshfree methods [29–32] were
addressed for volumetric locking issues.

In the attempts to improve the performance of lower-order fi-
nite elements, substantial efforts have been by Liu’s group, aiming
at reducing the so-called overly-stiffness of the standard FEM-T3
model. A concept of ‘‘softening effects’’ [29,33] was put forward
using strain smoothing operations for functions in H1 space [25],
and the generalized gradient smoothing operation for functions
in G1 space [29]. A family of so-called smoothed finite element
methods (S-FEMs) has been formulated and desired softening ef-
fects were observed [33]. The essential idea in the S-FEMs is to
reconstruct the compatible strain field in finite element settings
using the strain smoothing technique [25]. In the S-FEMs, the
reconstructed strain field is obtained over various sub-domains
called smoothing domains created on cells, nodes, edges or faces
of the background mesh, and the art of the S-FEM is the innovative
design of the smoothing domains for desired amount of softening
effects. S-FEMs have now various forms, including cell-based
smoothed finite element method (CS-FEM) [34], node-based
smoothed finite element method (NS-FEM) [35], edge-based
smoothed finite element method (ES-FEM) [36], and face-based
smoothed finite element method (FS-FEM) [37]. Theoretical as-
pects of the S-FEMs were studied in [38–41]. In addition, investiga-
tion in [42,43] further discussed on the approximation of S-FEMs
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using non-mapped shape functions and its performance when ele-
ments are heavily distorted.

The numerical operations used in the S-FEMs bring in informa-
tion from the neighboring elements in desired ways. Depending on
the requirements of the analyst, the property of the S-FEM model
can be distinct in various ways from that of the standard FEM mod-
el. The S-FEMs can also be viewed as a combination of the numer-
ical treatments of both used in FEM and meshfree methods [29].
Since smoothing domains in the S-FEMs often cover part of the
adjacent elements, the number of supporting nodes associated
with the smoothing domain is larger than the number of nodes
of an element. As a result, except the CS-FEM [33], the bandwidth
of the stiffness matrix in the S-FEMs (NS-FEM, ES-FEM, SF-FEM) is
increased, and the computational cost is hence higher than the
standard FEM with the same degrees of freedom. On the other
hand, thanks to the propagation of non-local information brought
by the adjacent elements, the S-FEMs often produce much more
accurate solutions than the standard FEM. For a given computa-
tional cost, all methods-FEM models gain better accuracy than that
of the displacement-based FEM [1,2]. The S-FEM models were ap-
plied to a wide range of practical mechanics problems [44–58], and
the S-FEM has become a simple and effective tool for analyzing a
variety of practical problems. Among the existing S-FEM models,
the ES-FEM was found so far the most computationally efficient
[33].

The ES-FEM exhibits some interesting properties for solid
mechanics problems such as: (1) it produces much more accurate
solutions than the linear triangular elements (FEM-T3) and often
found even more accurate than the FEM using quadrilateral ele-
ments (FEM-Q4) using the same sets of nodes; (2) the ES-FEM per-
forms well with distorted meshes; (3) the ES-FEM is stable even for
dynamic analysis and (4) it is quite simple to implement into the
existing FEM packages without any additional degrees of freedom.
However, the ES-FEM has also been found to have some inherent
shortcomings for incompressible and nearly incompressible prob-
lems. Although the ES-FEM with help of the NS-FEM can solve vol-
umetric locking as reported in [36], the ES/NS-FEM is a simple fix,
but not a full proof in the incompressible limit. Our recent study on
searching the root of the problem has revealed that the NS-FEM it-
self is not fully locking-free, as shown in this paper. Therefore, the
performance of the ES-FEM for locking problems needs to be fur-
ther investigated.

In this paper, we propose an improved formulation of the ES-
FEM for analysis of solid mechanics problems. It is very simple to
implement into the existing codes and has high effectiveness.
The essential idea is to supplement the linear displacement fields
with a so-called cubic bubble function associated with an inter-
nal node placed at the centroid of triangular elements. This in-
jects some further softening into the bES-FEM model. The
strain smoothing over the smoothing domains associated with
edges of the elements is devised, and the smoothed Galerkin
weak form is used to obtain the system stiffness matrix. We will
verify that the weakened weak solution satisfies the divergence-
free condition and hence works well for incompressible or nearly
incompressible media. It is found that the present element is
superior to other existing methods found in the literature,
including the mixed displacement/pressure mixed model of the
so-called MINI.

The rest of the paper is outlined as follows: Section 2 presents
an improved formulation of the ES-FEM with a bubble function.
Section 3 figures out an eigenvalue analysis of a number of meth-
ods in the incompressible limit. Displacement, energy and pressure
error norms are defined in Section 4 for precise qualitative exam-
ination of various models. Several numerical examples are pre-
sented in Section 5. Section 6 concludes with some main remarks
and discussions on directions for future work.

2. An improved formulation of the ES-FEM with bubble
function

2.1. A brief on finite element formulation

Consider a two dimensional (2D) linear elastic solid defined in a
domain X with a Lipschitz continuous boundary C. A body force b
acts within the domain. Boundary C is split into two parts, namely
Cu where displacements u are prescribed (Dirichlet conditions),
and Ct where tractions t are prescribed (Neumann conditions).
Those two parts form the boundary seamlessly C = Cu [Ct, Cu -
\Ct = £. The relations between the displacement field u, the
strain field e and the stress field r can be found in the literature
[1,2].Let V and V0 be the two spaces of kinematically admissible
displacements u, respectively, defined by

V ¼ fu 2 ðH1ðXÞÞ2; u ¼ uC on CDg ð1Þ
V0 ¼ fv 2 V; v ¼ 0 on CDg ð2Þ

with a Hilbert space H1ðXÞ defined in [3]. Let Vh � V be a finite ele-
ment approximation space. The statement of the discrete problem
becomes finding a discrete solution uh 2 Vh that satisfies [2]

8vh 2 Vh
0; aðuh;vhÞ ¼ f ðvhÞ ð3Þ

where a(.,.), f(.) are the bilinear and linear forms, respectively, de-
fined as

aðu;vÞ ¼ 2l
Z

X
eTðuÞDleðvÞdXþ k

Z
X
eTðuÞDkeðvÞdX

¼ 2 l
Z

X
eTðuÞDleðvÞdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

energy related to deviatoric term

þ k
Z

X
ðr � uÞðr � vÞdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

energy related to volumetric term

ð4Þ

f ðvÞ ¼
Z

X
bTvdXþ

Z
Ct

tTvdC

with divergence r = {o/ox, o/oy}, r � (�), and

Dl ¼
1 0 0
0 1 0
0 0 0:5

2
64

3
75; Dk ¼

1 1 0
1 1 0
0 0 0

2
64

3
75 ð5Þ

and l ¼ E=2ð1þ mÞ; k ¼ mE=ð1þ mÞð1� 2mÞ are the Lamé constants.
It is well known that using lower-order finite elements leads to

the poor performance in the incompressible limit. This is because
the following constraint of divergence-free conditions is not
satisfied:

r � uh ! 0 as m! 0:5 ð6Þ

This difficulty is well known to be the volumetric locking effect.
This is due to the number of incompressible constraints is exces-
sive to the total number of degrees of freedom in the finite element
discretization, resulting in its corresponding ratio being less than
one [3].

There are some ways to satisfy the divergence-free conditions.
One of popular approaches is to introduce bubble functions
[9,23] or residual-free bubbles [59,60] into mixed finite element
approximations [3]. In our work, bubble functions are exploited
and the method is simple to use only a displacement-based
formulation.

2.2. A space for displacement field with bubble functions

Assume that the bounded domain X is discretized into a set T of
Ne elements and Nn nodes such that X � Xh ¼

PNe
e¼1Xe. Let {NI(x)}

be such nodal basis (functions) for the finite dimension space Vh.
As shown in [36], the shape functions used in the ES-FEM-T3 are
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