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a b s t r a c t

The optimization of piezoelectric patches allocation in composite structures is analysed in this paper. The
finite element method and a linear quadratic regulator are used to study the electro-mechanical behav-
iour and the gain calculation. Due to the discrete nature of the problem, a simple binary Genetic algo-
rithm is used as an optimization tool. Three examples are presented related to the optimal allocation
based on Lyapunov functional. The PSD (Power Spectral Density) of the state space variables as well as
input voltages are presented in order to identify the controlled modes and to show the effective attenu-
ation obtained due to control of specific modes.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, piezoelectric materials has been used in several
areas and in a wide variety of problems related to vibration control,
noise reduction or elimination, shape control and positioning con-
trol [1–5].

In vibration control, active control of lightweight structures
may be the best solution due to the low damping (passive control).
In any case, it is always desirable to perform the active control
minimizing the control forces (which are constrained by the
actuator force limits) and the attenuation of the structural vibra-
tion, although these two aspects lead to a conflicting task. The
proper choice of the free parameters of the control algorithm as
well as the positioning and number of piezoelectric actuators play
the main role in achieving this goal. Modal control allows the
rational use of the energy spent in control, since it is possible to
control only the most important vibration modes (having the
higher energy content) and neglecting the other ones.

Ning [6] presented an optimal design method with respect to
the number and placement of piezoelectric patch actuators in
active modal vibration control on a plate using a genetic algorithm
(GA). This author used the eigenvalue distribution of the energy
matrix of the control input force as the function to determine the
optimal number and positions of the patches, concluding that the
initial disturbance conditions is the key factor.

The total weighted energy method was proposed by Ang et al.
[7] to obtain the weighting matrices for the modal LQR (linear qua-
dratic regulator) control. The correct choice of the weighting matri-
ces can generate vibration attenuations, which are proportional to
the input voltages. Then, a compromise between vibration attenu-
ation and input voltage should be obtained. A balanced vibration
control and low input cost may be attained considering three de-
sign variables: the total kinetic energy, the strain energy and the
input energy. The paper highlighted the advantages in using modal
control analysis due to reduction of computational cost.

Roy and Chakraborty [8,9], Satpathy [10] and Chakraborty and
Roy [11] presented the active vibration control of smart FRP (fibre
reinforced polymer) composite plate and shell structures. They
used a layered plate or shell finite element and an improved GA
to optimize the positioning of piezoelectric patches and the
weighting matrices Q and R for the control. The reasoning for
choosing best allocation among patch positions was based on the
damping ratio of the actual responses.

Based on a controllability index X, Wang and Wang [12,13]
used a binary coded GA to find the optimal placement of a previ-
ously defined number of patches. Displacements and input volt-
ages time histories are presented. As it is shown, in some cases
the optimal solution differs from the intuitive positioning based
on the mode shapes.

Several authors addressed the problem of allocation of the
piezoelectric patches. Araújo et al. [2] used a Direct Multisearch
Method with topology optimization of composite plates in order
to reduce the modal loss factor by the co-located negative velocity
feedback control. They apply the proposed methodology to a
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composite plate with coarse mesh refinement. Bachmann et al. [3]
used a strain based optimization approach to allocate the patches.
A MATLAB routine was also used allowing an exhaustive search of
the best allocations for the patches (like a Monte Carlo sampling).

Potami [1] investigated three different approaches for the opti-
mal positioning of sensors and actuators. All the proposed ap-
proaches present some level of heuristic procedures to handle
the problem. For the first approach, multiple sensors/actuators
are simultaneously allocated. In the second approach, the sensor/
actuators are placed in pairs, taking into account the influence of
the spatial distribution of disturbances. Finally, the third approach
provides a solution to the actuator location problem by incorporat-
ing considerations with respect to the preferred spatial regions
within the flexible structure. All investigations are performed rank-
ing the candidate positions based on a controllability index.

The proposed paper brings a discrete patch allocation which
does not use a controllability index as usual in the revised papers.
The metric used to highlight the suitability of the allocation is
based directly in the Lyapunov functional, since it represents a bal-
ance between vibration suppression (remaining kinetic energy)
and application of forces originated by the actuators (applied en-
ergy for vibration or displacement control). As it is assumed a dis-
crete allocation and a predefined number of patches, the obtained
results are not expected to be a global optimum, but it may be con-
sidered the optimal solution within those constraints.

2. Finite element formulation

2.1. The element GPL-T9 (generalised point and line compatibility
triangular finite element with 9 DoF) for slender plates and shells

The incremental equilibrium equations using the finite element
method (FEM) is given by [14,15]

½tK�fDug ¼ ftþDtRg � ftFg ð1Þ

where {Du} is the vector containing the incremental nodal displace-
ments and rotations, which is given by

fDug ¼
fDu1g
fDu2g
fDu3g

8><
>:

9>=
>;; fDuig ¼ fDuxi Duyi Dwi Dhxi Dhyi DhzigT

ð2Þ

with (i = 1,2,3), tþDtR is the vector of external nodal forces, tF is the
internal force vector and ½tK� is the stiffness matrix.

Taking into account coupling of membrane and bending effects
for slender shells and plates, the following system of equations is
obtained:

½Km� ½Kmb�
½Kbm� ½Kb�

� � fDumg
fDubg

� �
¼ ftþDtRmg � ftFmg

ftþDtRbg � ftFbg

� �
ð3Þ

where the stiffness matrices due to effects of membrane [Km], mem-
brane-bending coupling [Kmb], [Kbm] and bending [Kb], are defined by

½Km� ¼
Z

t A
½Bm�T ½Dm�½Bm�tdA;

½Kmb� ¼
Z

t A
½Bm�T ½Dmb�½Bb�tdA;

½Kbm� ¼
Z

t A
½Bb�T ½Dbm�½Bm�tdA ¼ ½Kmb�T ;

½Kb� ¼
Z

t A
½Bb�T ½Db�½Bb�tdA:

ð4Þ

where [B] and [D] are the strain–displacement matrix and constitu-
tive matrix, respectively, and m stands for membrane effects, b
represents bending effects and mb indicates membrane-bending
coupling effects.

These matrices are explicitly defined in the developed finite
element code. The external nodal force vector referred to the
membrane {tþDtRm} and bending effects {tþDtRb} are

tþDtRm
� �

¼
Z

t A
½Hm�T

tþDtRx
� �

tþDtRy
� �

( )
tdA;

tþDtRb

� �
¼
Z

t A
½Hb�T tþDtRz

� �
tdA;

ð5Þ

where [H] is the shape function matrix, ftþDtRxg, ftþDtRyg and ftþDtRzg
are the external nodal force vectors in the x, y and z direction, being
the internal membrane and bending force vectors in the time t,
ftFmg and ftFbg, respectively, given by

ftFmg ¼
Z

t A
½Bm�TftNgtdAþ

Z
t A
½Bm�TftNMgtdA;

ftFbg ¼
Z

t A
½Bb�TftMgtdAþ

Z
t A
½Bb�TftMNgtdA:

ð6Þ

where {N}, {M} and {NM} or {MN} are vectors of membrane force,
bending per unit length and bending-membrane coupling,
respectively.

For dynamic analysis, the equilibrium equation may be written
as

½M�ftþDt €ug þ ½C�ftþDt _ug þ ½tK�fDug ¼ fftþDtRg � ftFgg ð7Þ

The consistent mass matrix [M] is given by

½M� ¼
Xn

k¼1

hkqk

Z
A
½H�T ½H�dA ð8Þ

where n is the total number of composite layers, hk is the thickness
of the kth layer, qk is the specific mass of the kth layer and the com-
plete interpolation matrix [H] is given by

½H� ¼
Li 0 Huhi

0 0 0
0 Li Hvhi

0 0 0
0 0 0 Hi Hxi Hyi

2
64

3
75ði ¼ 1;2;3Þ ð9Þ

The damping matrix [C] can be evaluated using the Rayleigh
model
½C� ¼ aR½M� þ bR½K� ð10Þ

where constants are determined with eigenvalues and damping ra-
tios corresponding to two modes. More details may be found in Iso-
ldi et al. [14].

2.2. Embedded piezoelectric material

If plies of piezoelectric material are added to the laminated
composite material (as actuators and/or sensors), the electrical po-
tential field must be included as an additional degree of freedom
per node and per piezoelectric layer. The electric potential field
increment is given by [16]
tþDt

0 / ¼ t
0/ þ D/ ð11Þ

Increment of the electric displacement vector is evaluated as
follows:

tþDt
0 Ekt þ Dt ¼ � @ð

t
0/ þ D/Þ
@0xk

¼ � @
t
0/

@0xk
� @D/
@0xk

¼ t
0E1 � ck ð12Þ

where t
0E1 is the gradient of the electric potential field. Then, the

equations for the incremental electric displacement field is given by

fDEg ¼
DEx

DEy

DEz

8><
>:

9>=
>; ¼ �
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D/;y

D/;z
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@x
@D/
@y

@D/
@z

8>><
>>:

9>>=
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0
0
@D/
@z
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0
0
D/
hp

8><
>:
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>;
ð13Þ

When the finite element method is used, Eq. (13) is given by
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