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a b s t r a c t

A bi-level optimization strategy for finding the optimal ply numbers and stacking sequence in composite
structures has become one of the most popular techniques in recent years. When the optimization tech-
nique is based on the use of lamination parameters, the top level optimization has two subsets of design
variables for each substructure (e.g., a panel in wing design): lamination parameters treated as continu-
ous design variables, and three integers that define the number of plies of 0�, 90� and ±45� orientation.
When a continuous optimizer is used at the top level, there is a need for an algorithm to find an integer
representation of the obtained continuous number of plies that, ideally, does not alter the mechanical
performance of a panel. The focus of this paper is on solving the top level optimization problem whereas
the description of local level optimization problem that arranges the stacking sequence can be found in
the authors’ previous work. In order to determine the integer values of the ply numbers, two schemes
based on the lamination parameter matching are introduced in this paper. The strategy is to use a binary
code controlling the integer representation of ply numbers in order to obtain a discrete number of plies of
each orientation per composite panel. An optimization problem is formulated where the objective func-
tion (to be minimized) defines how close the lamination parameter values and the panel thickness,
obtained in the top level optimization, are to their values when integer ply numbers are considered. Such
an optimization problem is solved by a permutation GA for each individual panel. A wing box benchmark
problem is used to demonstrate the potential of these methods.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials play an important role in aeronautical
industry for tailoring the material’s mechanical characteristics
such as in-plane, flexural and bucking behaviour [1–4]. A bi-level
optimization strategy for finding the optimal number of plies and
stacking sequence in composite structures has been used in [5–
11]. When the top level optimization is based on the use of lamina-
tion parameters, treated as continuous design variables, there is a
need for an algorithm for an optimum integer representation of the
continuous variable (thickness) so that the stacking sequence opti-
mization can be performed to determine the detailed lay-up con-
figuration of a composite laminated structure. Due to industrial
requirements and manufacturing considerations, symmetric and
balanced laminates with ply orientations of 0�, 90�, 45� and �45�
are typically used resulting in a need to obtain three integer values
of the number of 0�, 90� and ±45� plies per panel.

The use of lamination parameters is a convenient approach to
representing the in-plane and flexural stiffness thus allowing for

an efficient optimization of laminated composite structures. It
was first used by Tsai et al. [12] and later applied to the buckling
optimization of orthotropic laminated plates by Fukunaga and Hir-
ano [13]. Miki [14] and Fukunaga [15] used lamination parameters
for tailoring mechanical properties of laminated composites. In a
laminated composite optimization problem, lamination parame-
ters can be used as design variables instead of layer thicknesses
and ply angles in order to avoid falling into local optima. Diaconu
et al. [16] used a variational approach to determine feasible regions
in the space of lamination parameters as constraints in the optimi-
zation problem. The soundness of the basic premise of looking for
the nearest discrete solution in lamination parameter space has
been called into question several times in the past, for example
in paper [17]. It has been demonstrated that the optimum discrete
solution is not necessarily the one nearest to the continuous solu-
tion in lamination parameter space. An alternative approach is to
use the lamination parameters as intermediate variables for a sur-
rogate model. In such an approach, the finite element analysis is
replaced with a surrogate model of the structural response in
terms of lamination parameters. Todoroki et al. [18,19] opted for
a global response surface, while Herencia et al. [17] constructed
a linear approximation of the design constraints around the
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optimum continuous design to achieve the better laminates’ stack-
ing sequences in the lamination parameter design space.

In lamination parameter-based optimization, at the top level the
out-of-plane lamination parameters and the numbers of plies of
each fibre orientation (0�, 90� and ±45�) in each panel are treated
as the design variables. The weight is the objective function to be
minimized subject to the constraints on buckling, strength and lam-
ination parameter feasibility. This is followed by the local level opti-
mization for shuffling plies subject to the satisfaction of the lay-up
rules, manufacturing and the mechanical performance preservation
requirements (including blending constraints), see [9,10] for details.

The integer representation of ply numbers, that is the focus of
this paper, can be viewed as a final stage of the top level optimiza-
tion, if a continuous optimizer is used. In this stage, the continuous
ply number values are converted into the integer ply numbers.

In this paper, two lamination parameter-based schemes are
introduced for the integer representation of the ply number to
interpret a continuous thickness given by the solution of the top
level problem as integer numbers of plies of each orientation. In
both schemes, procedure for the integer representation is separated
from the local level optimization hence the lay-up rules, manufac-
turing requirements and mechanical performance preservation
requirements (including ply blending) are not considered at the
integer representation of ply numbers stage. The objective is to tar-
get the values of the lamination parameters obtained by the contin-
uous optimizer in order to preserve the mechanical performance,
also matching the overall thickness in each panel. The continuous
representation of the number of plies is converted into the integer
values for the number of plies of each orientation, which will be
used as input data for the detailed stacking sequences of plies.
The main difference between these two schemes is in whether
matching of lamination parameters involves only the in-plane
group or all lamination parameters including out-of-plane ones.

2. Lamination parameter-based method

The concept of lamination parameters was first introduced in
[12]. The stiffness matrices A and D are governed by twelve lami-
nation parameters and five material parameters. The A and D stiff-
ness properties are derived from the classical laminate theory [20],
which ignores transverse shear and normal stresses in the analysis
of multilayered structures. Using this simple theory for composite
analysis, the computational expense involved in the optimization
of such structures can be significantly reduced. For more accurate
analysis of multi-layered structures, the layer-wise analysis and
zig-zag theories [21,22] could be used.

For orthotropic symmetric and balanced laminates, the number
of independent lamination parameters can be reduced to eight. The
elements of the membrane stiffness matrix A and the bending stiff-
ness matrix D can be expressed as:
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where the lamination parameters are:

nA
½1;2;3;4� ¼ 1
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½1;2;3;4� ¼ 12
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�hi=2 cos 2h; sin 2h; cos 4h; sin 4h½ �z2dz.

This suggests that the use of lamination parameters as design
variables in composite optimization can be very beneficial. It is
known (see [1,16]) that the relationships between the out-of-plane
lamination parameters can be expressed as:
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For the majority of aeronautical structures symmetric and
balanced laminates with ply orientation of 0�, 90�, 45� and �45�
are used. Thus, nD

4 ¼ 0 and the first relationship in (2) can be
rewritten as:

nD
2

� �2 �
nD

3 � 2 nD
1

� �2 þ 1
� �

1� nD
3

� �
2 1þ nD

3

� � : ð3Þ

Additional relationships between the in-plane and out-of-plane
lamination parameters for symmetric laminates are available, see
[17,23–26]. These expressions can be formulated as additional con-
straints for the top level optimization problem:
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In this paper, the lamination parameters are defined as:
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