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a b s t r a c t

Formation of a suitable null basis for equilibrium matrix is the main problem of finite elements analysis
via force method. For an optimal analysis, the selected null basis matrices should be sparse and banded
corresponding to sparse, banded and well-conditioned flexibility matrices. In this paper, an efficient
method is developed for the formation of null bases of finite element models (FEMs) consisting of hexa-
hedron elements, corresponding to highly sparse and banded flexibility matrices. This is achieved by
associating special graphs with the FEM and selecting appropriate subgraphs and forming the self-equil-
ibrating systems (SESs) on these subgraphs.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The force method of structural analysis in which the member
forces are used as unknowns is appealing to engineers since the
properties of members of a structure most often depend on the
member forces rather than joint displacements. This method was
used extensively until 1960. The advent of the digital computer
and the amenability of the displacement method for computation
attracted most researchers. As a result, the force method and some
of the advantages it offers in optimization and non-linear analysis
and optimization has been neglected.

In the force method of analysis, the number of equations to be
solved is the same as the degree of statical indeterminacy (DSI) of
the model. While in the displacement method this number is the
same as the degree of kinematical indeterminacy (DKI) which is
also known the degrees of freedom (DOF). For some models with
smaller DSI than DOF, it may be advantageous to utilize the force
method. Immediate access to member forces which is required to
be solved in reliability analysis is another advantage of the force
method. For multiple redesign problems or nonlinear elastic anal-
ysis the force method allows the solution of the modified problems
without restarting the computation from the beginning. For opti-
mal design of a structure with fixed topology, it is often necessary
to analyze the structure hundreds of times. In the force method
since the statical basis stays unchanged for each design under

different loading cases, it results in saving some computational
time compared to the displacement approach. Apart from these po-
sitive points, any development of the force method as a dual ap-
proach to the displacement method can theoretically be
attractive. For definition of the duality, the reader may refer to
Argyris and Kelsey [1].

Five different approaches are adopted for the force method of
structural analysis, classified as:

1. Topological force methods.
2. Graph theoretical methods.
3. Algebraic force methods.
4. Mixed algebraic-combinatorial force methods.
5. Integrated force method.

Topological methods have been developed by Henderson [2],
Maunder [3] and Henderson and Maunder [4] for rigid-jointed
skeletal structures. Graph theoretical methods based on cycle
bases of the graph models are due to Kaveh [5,6]. These methods
are generalized to cover different types of skeletal structures such
as rigid-jointed frames, pin-jointed planar trusses and ball-jointed
space trusses in [7,8].

Algebraic methods have been developed by Denke [9], Robinson
[10], Topçu [11], Kaneko et al. [12], and Soyer and Topçu [13].
Mixed algebraic-topological methods have been used by Gilbert
et al. [14] Coleman and Pothen [15,16], Pothen [17], and Heath
et al. [18]. The integrated force method has been developed by Pat-
naik [19,20], in which the equilibrium and compatibility conditions
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are satisfied simultaneously in terms of the element force
variables.

Recently applications of the graph theory methods are extended
to two classes of finite element models. The first class takes the ele-
ment forces along the edges of the elements [21–23] and in the
second class the element forces are concentrated at the mid-edge
of the edges of the elements [24].

In this paper, an efficient method is developed for the formation
of null bases for finite element models comprising of hexahedron
elements leading to highly sparse and banded flexibility matrices,
and can be used for optimal finite element analysis by the force
method. This is achieved by associating a special graph to the finite
element model and selecting subgraphs (known as c-cycles [7]) for
the formation of localized self-equilibrating stress systems (null
vectors). Their numerical values are calculated by an algebraic pro-
cess. The efficiency and accuracy of the present method is illus-
trated through simple examples.

2. Formulation of force method

Consider a discrete or discretized structure which is statically
indeterminate. The m-dimensional vector r contains independent
element (member) forces, and an n-dimensional vector p denotes
the nodal loads. The equilibrium equations of the structure can
then be expressed as:

Ar ¼ p ð1Þ

where A is an n �m equilibrium matrix. Assuming stability for the
structure, the equilibrium matrix will have full rank, i.e. t = m -
n > 0, rank(A) = n.

Also the member forces can be written as the sum of the partic-
ular and complementary solutions, where q is the t-dimensional
vector of the redundant forces.

r ¼ B0pþ B1q ð2Þ

B0 and B1 have m rows and n, and t columns, respectively. Pre-mul-
tiplying both sides of Eq. (2) by A and using Eq. (1) lead to

AB0 ¼ I ð3Þ
AB1 ¼ 0 ð4Þ

Here, B0 and B1 are not unique for a structure and many of such
matrices can be formed. B1 is called static basis or self-stress matrix.
This basis is known as null basis in mathematics and each column of
the null basis matrix is known as a null vector. The null space and
null vectors are mathematical counterparts of the complementary
solution space and self-equilibrating systems, respectively.

Minimizing the complementary potential energy subjected to
the constraint as in Eq. (1) requires r to minimize the quadratic form

minimize
1
2

rtFmr
� �

ð5Þ

Here, Fm is a m �m block diagonal matrix known as the unassem-
bled flexibility matrix containing the flexibility matrices of the ele-
ments of a structure in its block diagonal entries. Coupling Eq. (5)
and Eq. (2) results in

q ¼ � Bt
1FmB1

� ��1
Bt

1FmB0
� �

p ð6Þ

According to Eq. (6) by solving a set of equations, redundant forces
can be found.

After the determination of the member forces, using the load–
displacement relationship for each member, one can write member
distortion as

½u� ¼ ½Fm�½r� ¼ ½Fm�½B0B1�
p
q

� �
ð7Þ

Using virtual work, nodal displacements can be calculated as

½v0� ¼ ½Bt
0�½u� ð8Þ

Combining Eqs. (7) and (8) leads to

v0 ¼ Bt
0FmB0pþ Bt

0FmB1q ð9Þ

Substituting Eq. (6) in Eq. (9) and using Dij ¼ Bt
i FmBj leads to

v0 ¼ ½D00 � D01D�1
11 D10�p ¼ Fp ð10Þ

Therefore the overall flexibility matrix of structure is obtained
as

F ¼ D00 � D01D�1
11 D10 ð11Þ

For free vibration of linear structure without damping we have

½K� �x2½M�
� 	

½v0� ¼ 0 ð12Þ

Obviously Kv0 = p and substituting Eq. (10) in Eq. (12) leads to

½½I� �x2½m�½F��½p� ¼ 0 ð13Þ

Then the frequency equation of the system in the force method
is obtained as

½m�½F� � k½I�j ¼ 0 and k ¼ 1=x2 ð14Þ

Efficiency of this analysis depends on the required time for the for-
mation of the matrix G ¼ Bt

1FmB1 and its characteristics, i.e. sparsity
and bandedness together with its conditioning. For the formation of
a well-structured matrix G, one should select a well-structured B1

matrix.
Many algebraic procedures based on various matrix factoriza-

tions such as Gauss-Jordan elimination, LU, QR, LQ exist for the for-
mation a null basis matrix B1 of an equilibrium matrix A [14,18,27].
Basic concept of these methods is described briefly in the follow-
ing. Let matrix A be partitioned using a column permutation ma-
trix P as below:

AP ¼ ½A1;A2� ð15Þ

where A1 is a n � n non-singular matrix. Obviously matrix B1 can be
written as

B1 ¼ P
�A�1

1 A2

I

" #
ð16Þ

2.1. LU decomposition method

Using the LU decomposition method, one obtains the LU factor-
ization of A as::

PA ¼ LU and U�P ¼ ½U1;U2� ð17Þ

P and P are permutation matrices of order n � n and m �m, respec-
tively. Now B0 and B can be written as:

B0 ¼ �P
�U�1

1 L�1p
0

" #
and B1 ¼ �P

�U�1
1 U2

I

" #
ð18Þ

2.2. QR decomposition method

Using a QR factorization algorithm with column pivoting yields,
where P is again a permutation matrix, and R1 is an upper trian-

gular matrix of order n. B1 can be obtained as:

AP ¼ Q ½R1;R2� ð19Þ

B1 ¼ P
�R�1

1 R2

I

" #
ð20Þ
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