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a b s t r a c t

Several frequently overlooked concepts in linear elastodynamics are reviewed. First that the amplifica-
tion matrix may be obtained numerically and if obtained this way, it may give some extra information
on the programmed algorithm. Second that the adequate dimension of that matrix depends on the algo-
rithm at hand. Such dimension equals the number of independent initial conditions that must be pre-
scribed. Third that those initial conditions should be consistent with the problem at hand and with the
algorithm. Overshooting phenomena present in some time integration algorithms may be a consequence
of overlooking such issues.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In linear and nonlinear transient dynamics finite element anal-
ysis, time integration algorithms need to be employed. In explicit
analysis the central difference method is the common choice. In
implicit formulations, the Newmark-b method and specifically
the trapezoidal rule, is still the most common selection. There
are of course many other alternatives. Some of them are quite
old and well known and may be found in general purpose finite
element books, see for example [1–3]. Some are being currently
proposed [6–9]. Among the traditional ones is the Wilson-h meth-
od [10]. This method, which originally uses the linear acceleration
formulae, can be generalized using the Newmark-b equations to
yield a more general Wilson collocation method [11] of which
the Wilson-h method is a particular case. This algorithm shows
some desirable features as the numerical damping of high fre-
quency modes. However, the Wilson-h method, which is consid-
ered self-starting [1], [5] has been seldom used because it is
known to present ‘‘overshooting’’ during the first steps when using
a large time increment relative to the period of the problem (or
mode) if some initial conditions are used [2,12–14]. This is a highly
undesirable feature because the method seems unreliable for those
high frequency modes we want to numerically damp. A similar
although mild overshooting has also been encountered in the Hil-
ber–Hughes–Taylor (HHT) method [2], also considered self-start-
ing [15]. Stability of the time integration algorithms in linear

dynamics is usually studied through the amplification matrix of a
single degree of freedom problem because modal decomposition
and proportional damping converts a n � degree of freedom sys-
tem in n uncoupled single degree of freedom systems. In the case
of Wilson methods, the spectral radius of the amplification matrix
predicts stable and damped response for those high frequency
modes if the h collocation parameter is correctly chosen. A possible
explanation for the reason of the overshooting that Wilson-h and
HHT methods present is given in Reference [2]. However, we will
show that a more detailed analysis of overshooting phenomena
can be performed using numerically obtained amplification matri-
ces. In fact, it will be shown that numerically obtained amplifica-
tion matrices give in general more accurate information about
the programmed algorithm in the short (few steps) and long term
(many steps) and also about the consistency of the initial condi-
tions. In some sense numerically derived amplification matrices
can be considered to be more representative than analytical ones
because they exactly mimic what the programmed algorithm does
in non-exact arithmetic. We have chosen the well known Wilson-h
algorithm to explain and illustrate these issues. We also show that
the same concepts are applicable to the HHT algorithm, but many
conclusions may be applicable to other algorithms as well.

2. The Collocation Wilson method

In this section we briefly summarize the Collocation Wilson-
Newmark formulae to introduce notation and for future reference.
Let K,M, C be the stiffness, mass and damping matrices and let f
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and u be the load and displacement vectors respectively. Equilib-
rium is established at n + h with h > 0 [1,2,11]

M€unþh þ C _unþh þ Kunþh ¼ f nþh ð1Þ

where h is a parameter that is usually h P 1, and the acceleration
and external loads ün+h, fn+h at n + h are defined by the following
relation those at steps n and n + 1.

€unþh ¼ ð1� hÞ€un þ h€unþ1 ð2Þ
f nþh ¼ ð1� hÞf n þ hf nþ1 ð3Þ

Then, to obtain _unþh and un+h, the Newmark-b integration formulae
are used extended to n + h, i.e. the time increment is hDt

_unþh ¼ _un þ hDt½ð1� cÞ€un þ c€unþh� ð4Þ

unþh ¼ un þ hDt _un þ
1
2
ðhDtÞ2½ð1� 2bÞ€un þ 2b€unþh� ð5Þ

where b and c are the Newmark integration parameters.
Substituting Eq. (2) in Eqs. (4) and (5), we can write in predic-

tor–corrector format

_unþh ¼ _un þ hDtð1� hcÞ€un|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
predictor: _up

nþh

þ ch2Dt€unþ1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
corr:: _uc

nþh

ð6Þ

and

unþh ¼ un þ hDt _un þ
1
2
ðhDtÞ2ð1� 2hbÞ€un|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

predictor:up
nþh

þ bh3Dt2 €unþ1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
corr::uc

nþh

ð7Þ

These two equations may be substituted into Eq. (1) to obtain the
following equation in a-form

M�€unþ1 ¼ f �nþ1 ð8Þ

where

M� ¼ hM þ ch2DtC þ bh3Dt2K
f �nþ1 ¼ f nþh � ð1� hÞM€un � C _up

nþh � Kup
nþh

ð9Þ

Once ün+1 is solved for, the velocities _unþ1 and the displacements
un+1 at n + 1 are obtained from Newmark’s formulae with Dt as time
increment

_unþ1 ¼ _un þ ð1� cÞDt€un þ cDt€unþ1 ð10Þ

unþ1 ¼ un þ Dt _un þ
Dt2

2
ð1� 2bÞ€un|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

up
nþ1

þbDt2 €unþ1 ð11Þ

The original Wilson h method employs the linear acceleration
constants b = 1/6 and c = 1/2.

3. Numerical amplification matrix

As it is well known, see for example [1,2], linear multistep
methods may be written in the form

ynþ1 ¼ Ayn þ Ln ð12Þ

where Ln is the equivalent algorithmic load vector and A is the algo-
rithmic amplification matrix. In the absence of external loads, the
algorithm is governed by yn+1 = Ayn = Any1 and, hence, the amplifi-
cation matrix governs the stability of the numerical predictions
[1]. The vector yn depends on the specific algorithm and may be
properly customized. A typical choice is the usual dynamics state
vector

yn ¼ ½un;vn�T ð13Þ

where un and vn are the displacements and velocities respectively.
The linear case is usually selected to study the properties of the
integration algorithms. In such case modal superposition applies
and the stability properties are given by those of the mode with
highest frequency x (or equivalently lowest period T). Hence, the
amplification matrix is usually obtained analytically for one single
degree of freedom and plots for the spectral radii q(A) are obtained
as those given in Fig. 1 for different integration methods: Wilson-h,
collocation Wilson-h schemes, trapezoidal rule, Hilber–Hughes–
Taylor (HHT) method and Bathe method. However, the analytical
derivation of the amplification matrix is a tedious task, so some-
times the amplification matrices for a method are published after
the method has been introduced and some properties of the method
analyzed. For example, for the recently published Bathe algorithm,
the spectral radius clearly shows the previously observed numerical
superiority of the algorithm in terms of stability respect to other
algorithms because the Dt/T values for spectral radius decay is lar-
ger than in other algorithms, preserving important information at
those frequencies, and for Dt/T ?1 then q(A) ? 0, completely
damping the response of the highest modes in one step. These are
frequently desirable features, which in this case add to the imple-
mentation simplicity of the method. A similar explicit algorithm
which also shows better properties than the central differences
method may be found in [9].

In this paper we advocate the numerical determination of the
amplification matrix. This matrix may be readily determined
applying the algorithm to two single degree of freedom problems
with zero loads and with initial conditions y0 and �y0 respectively,
defined from the initial displacement u0 and initial velocity v0 as

y0 ¼
u0

v0

� �
¼

1
0

� �
and �y0 ¼

0
1

� �
ð14Þ

so the response obtained in just one step performed using the time
integration algorithm at hand is by definition of A

y1 ¼ Ay0 ¼
A11 A21

A12 A22

� �
1
0

� �
¼

A11

A12

� �
ð15Þ

�y1 ¼ A�y0 ¼
A11 A21

A12 A22

� �
0
1

� �
¼

A21

A22

� �
ð16Þ
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Fig. 1. Spectral radii for different methods.
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