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a b s t r a c t

In this paper the elastic–plastic uniform torsion analysis of composite cylindrical bars of arbitrary cross-
section consisting of materials in contact, each of which can surround a finite number of inclusions, tak-
ing into account the effect of geometric nonlinearity is presented employing the boundary element
method. The stress–strain relationships for the materials are assumed to be elastic–plastic–strain hard-
ening. The incremental torque–rotation relationship is computed based on the finite displacement (finite
rotation) theory, that is the transverse displacement components are expressed so as to be valid for large
rotations and the longitudinal normal strain includes the second-order geometric nonlinear term often
described as the ‘‘Wagner strain”. The proposed formulation does not stand on the assumption of a
thin-walled structure and therefore the cross-section’s torsional rigidity is evaluated exactly without
using the so-called Saint Venant’s torsional constant. The torsional rigidity of the cross-section is evalu-
ated directly employing the primary warping function of the cross-section depending on both its shape
and the progress of the plastic region. A boundary value problem with respect to the aforementioned
function is formulated and solved employing a BEM approach. The influence of the second Piola–Kirch-
hoff normal stress component to the plastic/elastic moment ratio in uniform inelastic torsion is
demonstrated.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

When a bar is subjected to uniform torque arising from two
concentrated torsional moments at its ends while the warping of
the cross-section is not restrained, the angle of twist per unit
length remains constant along its axis and the bar is under uniform
torsion. Though uniform torsion rarely occurs in practice due to
changes in the torque or restraints against twisting and warping,
uniform torque forms one component of the total nonuniform tor-
que, the other being the warping torque.

Designs based on elastic analysis are likely to be extremely con-
servative not only due to the significant difference between first
yield in a cross-section and full plasticity but also due to the unac-
counted for yet significant reserves of strength that are not mobi-
lized in redundant members until after inelastic redistribution
takes place. Besides, since thin-walled open sections have low tor-
sional stiffness, the torsional deformations can be of such magni-
tudes that it is not adequate to treat the angles of cross-section
rotation as small. Thus, both material inelasticity and geometric
nonlinearity are important for investigating the ultimate strengths
of beams that fail by torsion. Moreover, in recent years composite
structural elements consisting of a relatively weak matrix rein-

forced by stronger inclusions or of different materials in contact
are of increasing technological importance in engineering. Com-
posite structures can produce very elegant solutions to complex
structural engineering challenges, while composite beams or col-
umns offer many significant advantages, such as high load capacity
with small cross-section and economic material use, simple con-
nection to other members as for steel construction, good fire resis-
tance etc. Steel beams or columns totally encased in concrete are
most common examples.

Several researchers have dealt with the elastic–plastic uniform
torsional behavior of homogeneous beams with the pioneering
work of Nadai [1] who developed the sand-heap analogy for the
full plastic torque of solid sections. Christopherson [2] obtained
an elastic–plastic solution for an I-section, later Nadai [3] used
the rooftop membrane analogy for the elastic–plastic solution of
various cross-sections, Sokolovsky [4] developed an elastic–plastic
solution for an oval section, Smith and Siderbottom [5] derived an
elastic–plastic solution for prismatic bars of rectangular sections
and Billinghurst et al. [6] used the mitre method to obtain elas-
tic–plastic solutions for various cross-sections.

According to the nonlinearity induced by finite twist rotation
angles, Ashwell [7] and Gregory [8] studied both theoretically
and experimentally the elastic nonlinear behaviour of twisted
cantilevers of different cross-sections under uniform torsion condi-
tions, while Tso and Ghobarah [9] presented a study of the nonlin-
ear nonuniform elastic torsion of thin-walled open sections.
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Recently, numerical methods have also been used to investigate
the elastic–plastic uniform and nonuniform torsional behaviour of
beams. Yamada et al. [10], Johnson [11], and Itani [12] studied elas-
tic–plastic uniform torsion. Baba and Kajita [13] used a two-node,
four-degree-of-freedom beam element for the uniform torsion
analysis and a four-node, 12-degree-of-freedom rectangular sec-
tion element for the warping analysis of the section. Bathe and
Chaudhary [14] used warping displacement functions for beams
of rectangular cross-section in the formulation of a two-node Her-
imitian-based beam, and in the formulation of a variable number
of nodes isoparametric beam for the linear and nonlinear analysis
of torsion. Bathe and Wiener [15] employed a Hermitian beam ele-
ment and a nine-node shell element for the elastic–plastic nonuni-
form torsion of I-beams. Gellin et al. [16] presented a strip finite-
element model for the analysis of the nonlinear material behavior
of thin-walled members in nonuniform torsion. May and Al-Shaar-
baf [17] used a standard three-dimensional 20-node isoparametric
quadratic brick element in the elastic–plastic analysis of uniform
and nonuniform torsion of members subjected to pure and warp-
ing torsion. Chen and Trahair [18] using the mitre model to de-
scribe the shear strain distribution over the cross-section and Pi
and Trahair [19–21] using the principle of virtual work developed
a finite-element model for the inelastic analysis, plastic design and
plastic collapse of nonuniform torsion of I-section thin walled
beams. Finally, Wagner and Gruttmann [22] developed associated
isoparametric finite elements based on variational formulation to
analyze the uniform elastic–plastic torsion problem of prismatic
bars of arbitrary cross-section. All of the aforementioned research
efforts concern the torsion problem of homogeneous bars, while
composite bars have not yet been examined. Also, to the authors’
knowledge the boundary element method has not yet been used
for the numerical analysis of the aforementioned problems.

In this paper the elastic–plastic uniform torsion analysis of
composite cylindrical bars of arbitrary cross-section consisting of
materials in contact, each of which can surround a finite number
of inclusions, taking into account the effect of geometric nonlinear-
ity is presented employing the boundary element method. The
stress–strain relationships for the materials are assumed to be
elastic–plastic–strain hardening. The incremental torque–rotation
relationship is computed based on the finite displacement (finite
rotation) theory, that is the transverse displacement components
are expressed so as to be valid for large rotations and the longitu-
dinal normal strain includes the second-order geometric nonlinear
term often described as the ‘‘Wagner strain” [20]. The torsional
rigidity of the cross-section is evaluated directly employing the
primary warping function of the cross-section [23] depending on
both its shape and the progress of the plastic region. A boundary
value problem with respect to the aforementioned function is for-
mulated and solved employing a BEM approach. The proposed for-
mulation procedure is based on the assumption of no local or
lateral torsional buckling or distortion and includes the following
essential features and novel aspects compared with previous ones:

(i) Large deflections and rotations are taken into account, that is
the strain–displacement relationships contain higher order
displacement terms.

(ii) For the first time in the literature, the influence of the second
Piola–Kirchhoff normal stress component on the plastic/
elastic moment ratio in uniform inelastic torsion is
demonstrated.

(iii) For each one of the materials of the cross-section, material
inelasticity is taken into account, that is the elastic–plastic
incremental stress–strain relationship is derived from the
von Mises yield criterion, a strain flow rule and a strain hard-
ening rule. Integrations of stress resultants for every itera-
tive step and restoration of equilibrium for every

converged incremental step are performed numerically
using a set of monitoring stations distributed over the area
of the cross-section.

(iv) The present formulation is applicable to bars of arbitrary
composite cross-section, while the case of a homogeneous
cross-section can be treated as a special one.

(v) The presented formulation does not stand on the assump-
tion of a thin-walled structure and therefore the cross-sec-
tion’s torsional rigidity is evaluated exactly without using
the so-called Saint Venant’s torsional constant.

(vi) The boundary conditions at the interfaces between different
material regions have been taken into account.

(vii) The proposed method can be efficiently applied to compos-
ite beams of thin or thick walled cross-section and to lami-
nated composite beams. Previous formulations concerning
composite beams of thin walled cross-sections or laminated
cross-sections are analyzing these beams using the ‘refined
models’. However, these models analyze the beam with
respect to cross-section mid lines ignoring the warping
along the thickness of the walls. Moreover, they do not sat-
isfy the continuity conditions of transverse shear stress at
layer interfaces and assume that the transverse shear stress
along the thickness coordinate remains constant, leading to
the fact that kinematic or static assumptions cannot be
always valid [24–26].

Numerical results are presented to illustrate the method and
demonstrate its efficiency and accuracy. The contribution of the
normal stresses is investigated by numerical examples with great
practical interest.

2. Statement of the problem

Consider a bar of length l with an arbitrarily shaped composite
cross-section, consisting of materials in contact, each of which can
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Fig. 1. Prismatic bar subjected to a twisting moment (a) with a composite cross-
section of arbitrary shape occupying the two dimensional region X (b).
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