
Synchronous flow shop problems: How much can we gain by leaving
machines idle?$

Stefan Waldherr a, Sigrid Knust a,n, Dirk Briskorn b

a Institute of Computer Science, University of Osnabrück, 49069 Osnabrück, Germany
b Department of Production and Logistics, University of Wuppertal, 42119 Wuppertal, Germany

a r t i c l e i n f o

Article history:
Received 14 December 2015
Accepted 27 October 2016

Keywords:
Synchronous flow shop
Dummy jobs
Idle times

a b s t r a c t

In synchronous production lines it may be beneficial to leave machines idle instead of processing the
next job immediately. In this paper, the effects of inserting voluntary idle times are discussed in more
detail for different objective functions (minimization of makespan, total completion time, maximum
lateness). Besides deriving theoretical bounds on how much can be gained by inserting idle times, an
extensive computational study is conducted to empirically examine the actual improvements. For this,
exact algorithms and heuristics capable of incorporating voluntary idle times are proposed to find (near-)
optimal schedules. It can be seen that the potential gain is very large in theory, while the empirical
results indicate that in general only small improvements are achievable in practice.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study synchronous flow shop problems and
the effects of voluntarily leaving machines idle for some time
periods. A “synchronous flow shop” (“SFS” for short, also called
“flow shop with synchronous movement”) models a synchronous
unpaced assembly line (cf. [3]) and is a variant of a non-
preemptive permutation flow shop where transfers of jobs from
one machine to the next take place at the same time. The pro-
cessing of jobs on their respective machines is therefore organized
in synchronous cycles and the jobs are transferred to the next
machine only after the current jobs on all machines are finished.
As a consequence, the processing time of a cycle (“cycle time” for
short) is determined by the maximum processing time of the
operations contained in it. If the processing time of a job on a
certain machine is smaller than this maximum, the corresponding
machine is idle (but occupied) until the job may be transferred to
the next machine. In contrast, in a classical flow shop the transfer
of jobs is asynchronous: Jobs may be transferred to the next
machine as soon as their processing on the current machine is
completed and processing on the next machine immediately starts
as soon as this machine is available.

Synchronous flow shops have been studied in the broader field
of assembly line balancing. Most research in this area is performed
on the problem of designing and configuring the production sys-
tem (e.g., assigning workers and tasks to workstations, determin-
ing a line balancing or allocating buffer storage), see e.g., Doerr
et al. [5], Urban and Chiang [16], Vairaktarakis et al. [17]. In com-
parison to the asynchronous unpaced case, which relates to the
intensively studied classical flow shop model (see e.g., Emmons
and Vairaktarakis [6], Gupta and Stafford [7], Yenisey and Yag-
mahan [22]), there is only few literature concerning solution
procedures for SFS models as pointed out by Boysen et al. [3].
Kouvelis and Karabati [12] considered a production line with
synchronous movement, where a set of jobs is produced periodi-
cally and the throughput is to be maximized (which is equivalent
to minimizing the total cycle time of the production line). In [12] it
is proven that the problem is NP-hard for an arbitrary number of
machines, furthermore, a mixed integer programming formulation
and a heuristic solution approach are presented. For the non-
periodic version of this problem, the NP-hardness result was
strengthened by Waldherr and Knust [20] who proved that the SFS
problem with the makespan objective is already strongly NP-hard
for three machines. Moreover, they showed that minimizing the
maximum lateness as well as minimizing the total completion
time is strongly NP-hard even for two machines. Soylu et al. [14]
present a branch-and-bound approach and several heuristics to
minimize the makespan in SFSs. Huang [8] as well as Huang and
Ventura [10] consider rotating production units with synchron-
ous movement and a loading/unloading (L/U) station. In this

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/omega

Omega

http://dx.doi.org/10.1016/j.omega.2016.10.006
0305-0483/& 2016 Elsevier Ltd. All rights reserved.

☆This work was supported by the Deutsche Forschungsgemeinschaft, KN 512/7-1
n Corresponding author.
E-mail addresses: stefan.waldherr@uni-osnabrueck.de (S. Waldherr),

sigrid.knust@uni-osnabrueck.de (S. Knust),
briskorn@uni-wuppertal.de (D. Briskorn).

Please cite this article as: Waldherr S, et al. Synchronous flow shop problems: Howmuch can we gain by leaving machines idle? Omega
(2016), http://dx.doi.org/10.1016/j.omega.2016.10.006i

Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/03050483
www.elsevier.com/locate/omega
http://dx.doi.org/10.1016/j.omega.2016.10.006
http://dx.doi.org/10.1016/j.omega.2016.10.006
http://dx.doi.org/10.1016/j.omega.2016.10.006
mailto:stefan.waldherr@uni-osnabrueck.de
mailto:sigrid.knust@uni-osnabrueck.de
mailto:briskorn@uni-wuppertal.de
http://dx.doi.org/10.1016/j.omega.2016.10.006
http://dx.doi.org/10.1016/j.omega.2016.10.006
http://dx.doi.org/10.1016/j.omega.2016.10.006
http://dx.doi.org/10.1016/j.omega.2016.10.006


framework, a job enters the production unit at the L/U station and
is then processed on all machines before returning to the L/U
station where it is unloaded. A polynomial time algorithm to
minimize the makespan for a production unit with two machines
and constant product-independent removal times is presented.
Additionally, dynamic programming approaches for the case with
non-constant removal times and two or three machines are pro-
posed. A genetic algorithm is presented by Huang and Hung [9].
Baker [2] evaluates a spreadsheet-based approach for synchronous
flow shops. A practical application was studied in Waldherr and
Knust [19], where a production line with synchronous movement
resembling a synchronous flow shop was used in the production
process of shelf-boards at a kitchen manufacturer.

For classical flow shops, positive effects of voluntarily leaving
machines idle (also referred to as idle time insertion) have been
known for a long time, e.g., Baker [1], Kanet and Sridharan [11]. In
these models, the scheduler is allowed to delay the start of an
operation despite it being ready for processing in order to wait for
the availability of an operation of another job. This strategy can be
beneficial, e.g., in models with release times for the jobs or pro-
blems in which jobs finishing too early are penalized. Since in the
classical flow shop the transportation is asynchronous, delaying
the start of an operation on one machine does not affect the
operations currently processed on the other machines. In the SFS
model, this is only true if the delay of an operation is shorter than
the idle time enforced by the maximum processing time of an
operation processed in the same cycle. Otherwise, delaying the
operation also results in additional idle times on all other
machines. Kouvelis and Karabati [12] pointed out that the per-
formance of synchronous production lines may be improved by
leaving machines completely idle via not starting a job on the first
machine in some cycles and instead only moving all other jobs to
their respective next machine. Due to the synchronous movement
of all jobs, an idle machine in the current cycle leads to its suc-
ceeding machine being idle in the next cycle. To model this, in [12]
it was suggested to introduce dummy jobs with zero processing
times on all machines and to insert them into the schedule
accordingly. Using a small example with three machines and three
jobs, it was shown that introducing such dummy jobs may
decrease the total cycle time. The authors stated that the total
cycle time is not a monotone function in the number of dummy
jobs (i.e., an optimal solution for kþ1 dummy jobs may be worse
than an optimal solution for k dummy jobs). Thus, one has to try
different numbers of dummy jobs in order to find an optimal
solution in the class of schedules allowing an arbitrary number of
dummy jobs.

While in [12] it has been shown that voluntary idle times can
improve the optimal objective value in a SFS, the gains have not
been quantified. Motivated by the practical application studied in
[19] we became interested in the question whether the example of
[12] is artificially constructed or the use of dummy jobs may really
be beneficial in practice. The aim of this paper is to study more
deeply (analytically and empirically) the effects of introducing
dummy jobs.

From a theoretical view, it is interesting to study the limits of
how much can be gained by inserting dummy jobs. In this paper
we do so, first, by a formal analysis bounding the absolute and
relative improvement of the objective value when dummy jobs are
allowed. For both, theoretical and practical purposes, we derive
upper bounds on the maximum number of dummy jobs whose
insertion may still improve the objective value. This information
can be very useful in algorithms where the runtime depends on
the number of dummy jobs to be considered or in situations where
we want to evaluate whether adding another dummy job can lead
to a further improvement of the objective value at all.

To quantify the practical use of inserting dummy jobs, we
conducted a computational study empirically examining the actual
improvements that can be achieved. Since our goal is to evaluate
the effects of dummy jobs and the improvement achievable by
including them, we concentrate on exact solution methods and
established heuristics for synchronous flow shop problems which
obtain good results for the case without dummy jobs. Further, we
focus on methods that are easy to implement. Note that highly
sophisticated methods are only rarely used in practice. Since we
aim at conclusions to be drawn for real-world settings, we employ
methods that are likely to be used in practice.

The remainder of this paper is organized as follows. In Section 2
we give a more formal description of SFS problems and the
insertion of dummy jobs. Afterwards, in Section 3 we determine
upper bounds on the number of dummy jobs such that adding
even more of them cannot be beneficial. In Section 4 we provide
bounds on the improvement that can be realized by introducing a
certain number of dummy jobs. Algorithms to solve SFS problems
with dummy jobs are presented in Section 5. These algorithms are
evaluated conducting a computational study in Section 6. Finally,
conclusions are presented in Section 7.

2. Problem description

In this section, we describe the problems under consideration
more formally and introduce the notation used throughout the
remainder of the paper. We consider a permutation flow shop
with m machines M1;…;Mm and n jobs N¼ f1;…;ng where job
jAN consists of m operations O1j-O2j-⋯-Omj which have to be
processed in this order. Operation Oij has to be processed without
preemption on machine Mi for pij time units. Only permutation
schedules are feasible, i.e., the jobs have to be processed in the
same order on all machines.

The processing is organized in synchronized cycles which is
motivated by production lines where jobs have to be moved from
one machine to the next by an unpaced synchronous transporta-
tion system. This means that in a cycle all current jobs start at the
same time on the corresponding machines. Then all jobs are
processed and have to wait until the last one is finished. After-
wards, all jobs are moved to the next machine simultaneously. The
job processed on the last machine Mm leaves the system, a new job
(if available) is put on the first machine M1.

Each feasible schedule may be represented by a sequence σ of
jobs reflecting the order in which each machine processes the jobs.
With each sequence a corresponding (left-shifted) schedule is
associated in which each operation starts as early as possible. A
schedule consists of nþm�1 cycles, which are divided into a
starting phase (m�1 cycles, until jobs are present on each
machine), a standard phase (n�mþ1 cycles, as described above),
and a final phase (m�1 cycles, no more jobs are available for M1).
For any sequence σ, let σðλÞ be the λ-th entry in σ. In cycle t,
1rtrnþm�1, operations O1σðtÞ;…;Omσðt�mþ1Þ are processed
(with obvious adaptations for the first m�1 and the last m�1
cycles). The cycle (processing) time Pt of cycle t can then be cal-
culated by

Pt ¼maxfpiσðtþ1� iÞjmaxf1; t�nþ1gr irminfm; tgg

and its completion time is given by
Pt

τ ¼ 1 Pτ .
Let Cj be the completion time of job j, i.e., the time when j has

been processed on all machines and leaves the system. We assume
that a job can only be accessed after the whole cycle has been
completed, i.e., the job has to wait until all jobs on the other
machines in the corresponding cycle are finished. Thus, the com-
pletion time Cj of a job j is defined as the time when the

S. Waldherr et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: Waldherr S, et al. Synchronous flow shop problems: Howmuch can we gain by leaving machines idle? Omega
(2016), http://dx.doi.org/10.1016/j.omega.2016.10.006i

http://dx.doi.org/10.1016/j.omega.2016.10.006
http://dx.doi.org/10.1016/j.omega.2016.10.006
http://dx.doi.org/10.1016/j.omega.2016.10.006


Download English Version:

https://daneshyari.com/en/article/5111695

Download Persian Version:

https://daneshyari.com/article/5111695

Daneshyari.com

https://daneshyari.com/en/article/5111695
https://daneshyari.com/article/5111695
https://daneshyari.com

