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a b s t r a c t

A new method is presented to obtain the confidence structural responses of truss structures under ellip-
soid static load uncertainty. By using a combination of duality theorem and SDP relaxation technique, we
reformulate the original convex maximization problem as a relaxed convex SDP problem, which can be
solved with global optimality. Numerical examples demonstrate the effectiveness of the proposed
approach.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In structural and mechanical design, traditional optimization
methods based on deterministic model have been applied success-
fully. In deterministic optimization model, parameters such as
material properties, loads and geometry coordinates are all treated
as deterministic parameters with fixed values. However, uncer-
tainties such as manufacturing and observation errors do exist
when a structure is built. Therefore the concept of uncertainty
must be incorporated into the model of optimization otherwise
the reliability of the optimal design can not be guaranteed.

A lot of robustness-based optimization methods have been pro-
posed in last two decades. Generally speaking these methods are
mainly based on two kinds of uncertainty models – the probabilis-
tic uncertainty model [1–5] and the non-probabilistic uncertainty
model [6–9]. Using the non-probabilistic model, generally, the ro-
bust optimization problem can be formulated as follows:

min
x

max
p2Up

f ðx; pÞ

s:t: max
p2Up

gðx; pÞ 6 0; i ¼ 1; . . . ; n;
ð1:1Þ

where x and p denote the design variable vector and uncertain
parameter vector, respectively. Up is a bounded set in the space
of p. Eq. (1.1) represents a nested Bi-level optimization problem.
At the upper level, the aim is to find the best design to improve
the structural performance, while at the lower level the aim is to

find the worst structural responses (extremal structural re-
sponses) considering the uncertainty of the parameters for a gi-
ven design. It means that the feasibility of a given design
should be determined by solving another optimization problem
at this stage. This is quite different from deterministic optimiza-
tion problems. It is worth noting that the requirements of the
global optimality of the solutions for the upper and lower level
optimization are not the same. For the upper level optimization,
a local optimum is acceptable since improvements can be still
made even without global optimality. On the other hand, for
the lower level problem, the global optimality of the solution
must be satisfied otherwise the feasibility of a given design can
not be guaranteed, since worst case response (extremal responses)
must be considered in this case. In other words, in order to solve
the robust optimization problem formulated in the form of Bi-le-
vel program correctly, the global optimality of the the lower level
problem is a necessary requirement. Unfortunately, this issue has
not been well addressed in the literatures.

As for finding the extremal values of the structural response un-
der the uncertainty of parameters, various of approaches have been
proposed. Assuming the uncertain parameters perturbing within
small intervals, Qiu and Elishakoff [10] made an interval analysis
of structures based on the first-order interval perturbation ap-
proach. Muhanna and Mullen [11] made further discussions on
the linear interval approach for static structure analysis with
uncertain parameters. Rao and Berke [12] developed an approach
for the analysis of engineering systems for which the input param-
eters are given as interval members. Mcwilliam [13] discussed how
to calculate the static displacement bounds of structures with
uncertain parameters. Based on the perturbation technique and

0045-7949/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruc.2008.10.001

* Corresponding author. Tel.: +86 411 84707807; fax: +86 411 84708769.
E-mail address: guoxu@dlut.edu.cn (X. Guo).

Computers and Structures 87 (2009) 246–253

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

mailto:guoxu@dlut.edu.cn
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


the interval extension, Chen et al. [14] proposed an approach to
find the upper and lower bounds of the static displacements. Re-
cently, with the use of quadratic embedding of uncertainty and
the semi-definite relaxation techniques, Kanno et al. [15,16] pro-
posed an elegant approach to compute the robustness function
and confidence ellipsoids for static response of truss structures
with load and structural uncertainties. For the tested problems, it
was reported that tight bounds can be obtained even for moder-
ately large magnitudes of perturbations.

The aim of the present paper is to discuss how to guarantee
the feasibility of a given design transferred from the upper level
problem by solving the lower level worst case analysis optimiza-
tion problem in robust optimization of truss structures under
static load uncertainty. As will be shown in Section 3, for the
considered case, the lower level problem is in fact a concave
minimization (or convex maximization) program, which has been
studied intensively in global optimization. Generally speaking,
concave minimization problems are NP-hard and will possess
many local optimal solutions. For this reason, they are also
called as multi-extremal global optimization problems [17].
Using standard algorithms, it will fail to find the global optimal
solution of the concave minimization problems, which has been
pointed out by many researchers.

In order to overcome the difficulties mentioned above, in this
paper we reformulate the problem as a convex SDP problem, with
the use of the SDP relaxation technique. Our idea is to find a con-
fidence upper bound of the global optimal solution in the lower le-
vel problem instead of trying to find the global optimal solution
directly. In this way, the feasibility of a given design can always
be assured. The obtained SDP problem is a convex program, which
can be solved with global optimality by well established algo-
rithms. The rest of this paper is organized as follows: In Section
2, the formulation of the considered robust optimization problem
is proposed with its properties being discussed. In Section 3, we
show that the non-convex lower level optimization problem can
be reformulated as a standard linear SDP problem. This SDP prob-
lem is exactly the dual of the primal optimization problem. It can
be shown that if the uncertainty of the external load is described
by a single ellipsoid, then there is no dual gap between the two
problems although the primal problem is non-convex i.e., the opti-
mal solutions of the primal problem can be obtained accurately by
solving the dual problem instead. If the uncertainties are described
by multiple ellipsoids, then confidence estimations of the extremal
structural responses can be obtained, which is very important to
ensure the feasibility of a given design point. The approach pro-
posed is then applied to several test problems for demonstration
of its effectiveness in Section 4. Finally some concluding remarks
are given.

2. Problem formulation

2.1. Notations

Let S
n � Rn�n be the space of real symmetric matrices. A matrix

X 2 Sn is said to be positive semi-definite or positive definite if
x>Xx P 0 or x>Xx > 0 8x 2 Rn: Equivalently, X 2 S

n is positive
semi-definite if all its eigenvalues are nonnegative. X � 0 (X � 0)
means X is positive definite (positive semi-definite). These nota-
tions will be used in the subsequent texts.

2.2. Robust optimization of truss structure under load uncertainty

It is well known that the structural robust optimization prob-
lem can be described as a Bi-level program. If the minimization
of the total weight of a truss structure is considered with the

uncertain external load, the optimization problem can be written
as

find a :¼ ða1; . . . ; anÞ> 2 Rn

Min w ¼
Xn

i¼1

.iliai ð2:1aÞ

s:t: max
p2Up

giða; pÞ 6 0; i ¼ 1; . . . ;m; ð2:1bÞ

where n is the total number of bars in the ground structure, m de-
notes the number of the behavior constraints. .i and li are the mass
density and the length of the ith bar, respectively.
a :¼ ða1; . . . ; anÞ> 2 Rn is the vector of design variables with ai

denoting the cross sectional area of the ith bar. p 2 Rnd
is the exter-

nal load vector with nd denoting the total number of the degrees of
freedom. We first assume that the uncertainty of the external load
can be described by a single ellipsoid:

Up ¼ fp 2 Rnd jðp� p0Þ
>Bðp� p0Þ 6 1g; ð2:2Þ

where B 2 Rnd�nd
is a symmetric positive semi-definite matrix and

p0 2 Rnd
is the nominal value vector of the external load. In the next

section, we will discuss the more general case in which the uncer-
tainties are described by multiple-ellipsoids.

The lower level optimization problem appeared in (2.1b) deter-
mines the feasibility of a given design point a. This is achieved by
finding the extremal (worst case) structural response as p is varied
in Up. As has been pointed out in the previous section, it is of ut-
most importance to solve (2.1b) with global optimality. In the fol-
lowing, we will discuss the properties of the lower level problem
(2.1b) from the global optimization point of view. It can be shown
that for different kinds of structural responses, the degree of diffi-
culty for the corresponding worse case analyses will be quite
different.

If the considered behavior constraint in (2.1b) is the algebraic
value of a nodal displacement, then (2.1b) can be expressed
as(assuming that the global optimal value is greater than zero):

P1 find p 2 Rnd

Min � d>l K�1p

s:t: ðp� p0Þ
>Bðp� p0Þ 6 1;

ð2:3Þ

where K 2 Snd
is the global stiffness matrix. dl 2 Rnd

is the localiza-
tion vector such that d>l u ¼ ul with ul denoting the lth component
of the displacement vector.

The objective function in P1 is linear with respect to p 2 Rnd
and

the feasible domain of P1 is a convex set. Therefore P1 is a convex
optimization problem, which can be solved by general gradient
based optimization algorithms with global optimality.

Using the algebraic value of a nodal displacement as objective
function in P1 implies that the direction of the concerned nodal dis-
placement is known a prior. This is only reasonable when the mag-
nitude of the disturbance of the external load around its nominal
value is not very large. If large magnitude of uncertainty is consid-
ered, it is more suitable to use the Euclidean norm of a displace-
ment vector as the measure of the extremal structural response.
Under this circumstance, the lower level problem can be formu-
lated as

P2 find p 2 Rnd

Min � ðu2
l þ u2

mÞ ¼ �p>Ap ¼ �p>ðAl þ AmÞp
s:t: ðp� p0Þ

>Bðp� p0Þ � 1 6 0;

ð2:4Þ

where Al ¼ K�1dld
>
l K�1 � 0 and Am ¼ K�1dmd>mK�1 � 0.

Similarly, if the compliance of the structure is considered, the
corresponding optimization problem is
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