
Maximum lateness minimization in one-dimensional bin packing$

Claudio Arbib a, Fabrizio Marinelli b,n

a Dipartimento di Scienze/Ingegneria dell'Informazione e Matematica, Università degli Studi dell'Aquila, Via Vetoio, Coppito, I-67010 L'Aquila, Italy
b Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy

a r t i c l e i n f o

Article history:
Received 17 June 2015
Accepted 8 June 2016

Keywords:
One-dimensional bin packing
Scheduling
Mixed Integer programming
Integer reformulation

a b s t r a c t

In the One-dimensional Bin Packing problem (1-BP) items of different lengths must be assigned to a
minimum number of bins of unit length. Regarding each item as a job that requires unit time and some
resource amount, and each bin as the total (discrete) resource available per time unit, the 1-BP objective
is the minimization of the makespan Cmax ¼maxjfCjg. We here generalize the problem to the case in
which each item j is due by some date dj: our objective is to minimize a convex combination of Cmax and
Lmax ¼maxjfCj�djg. For this problem we propose a time-indexed Mixed Integer Linear Programming
formulation. The formulation can be decomposed and solved by column generation relegating single-bin
packing to a pricing problem to be solved dynamically. We use bounds to (individual terms of) the
objective function to address the oddity of activation constraints. In this way, we get very good gaps for
instances that are considered difficult for the 1-BP.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In BIN PACKING, a set J of n items of distinct sizes must be assigned
to a minimum number of identical bins, so that the size of the
items assigned to any bin never exceed its capacity. In the
(orthogonal) s-dimensional problem, items and bins are closed
intervals of IRs, and the former must be placed into the latter with
no overlap. Items can or cannot be rotated before placement: in
the latter case, the edge lengths of each interval can be normal-
ized, and bins become unit s-cubes.

One can interpret the s-dimensional BIN PACKING as a scheduling
problem with n jobs of unit time length: when scheduled, job j
consumes some fraction of a discretized resource, the bin, avail-
able in one unit per time unit. In general, applications include all
those cases (e.g., ads scheduling in sponsored internet search [1])
in which the resource used has both a geometric and a time
dimension. Here are other popular applications:

� in s-dimensional cutting, jobs are parts to be produced, and the
resource is a stock of standard size from which smaller items
must be cut [2, 5–7,14,17, 21, 31];

� in telecommunication channel scheduling, jobs are packets of
known length, and the resource is a frame able to host packets
up to a given total length [4,11].

Under common assumptions, completion times corresponds to
stock positions in the sequence, and minimizing Cmax means
minimizing the number of resource units used: standard sizes in
cutting problems, frames in packet scheduling, etc. But Cmax is just
one of the many scheduling objectives one can be interested in. To
generalize, call Cj the completion time of j (that is: item j is
assigned to the Cj-th bin) and associate j with a cost function f jðCjÞ.
In multi-objective scheduling, a solution is evaluated through
several functions f kj ðCjÞ, k¼ 1;…;R. Often, a multi-objective is
summarized by a convex combination of functions obtained from
the f kj ðCjÞ:

f ðC1;…;CnÞ ¼
Xr

k ¼ 1

αkmax
jA J

ff kj ðCjÞgþ
XR

k ¼ rþ1

αk

X
jA J

f kj ðCjÞ

with
PR

k ¼ 1 αk ¼ 1;αkZ0, k¼ 1;…;R.
If a function is non-decreasing with Cj, then it is called regular

[20, chapter 2]. When item j is due by a specific date dj, the fol-
lowing regular functions are frequently taken into consideration:

� Tardiness: f jðCjÞ ¼ Tj ¼maxfCj�dj;0g;� Lateness: f jðCjÞ ¼ Lj ¼ Tj�Ej ¼ Cj�dj.
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1.1. Our problem

The general function f ðC1;…;CnÞ combines min-max and min-
sum terms. In this paper we focus on a pure min–max problem
with r¼ R¼ 2:

f 1j ðCjÞ ¼ Cj f 2j ðCjÞ ¼ Cj�dj

The second function is the lateness of item j: namely, we seek
for a pack-and-schedule that solves

min
C1 ;…;Cn

f ðC1;…;CnÞ ¼ α1Cmaxþα2Lmax ð1Þ

for given rational constants α1;α2Z0 such that α1þα2 ¼ 1. The
opportunity of giving different weights to material and lateness
costs is much application-dependent. There are relevant industrial
cases in which material cost is closely comparable to, and some-
times larger than, the cost of delay (see e.g. [3]). In any case, α1 and
α2 derive from the real costs of bin usage and time. When these
costs cannot be easily evaluated, it is more appropriate to keep
separate goals and transform one or both terms of the objective
function into constraints (if both, we face a feasibility problem and
speak of goal-programming). Our model naturally fits with this
approach, see Section 2.4.

Models and methods will be developed according to the
following

Assumption 1.1. In the definition of problem (1), we assume:

(i) constant cut time (this common assumption, see [2,7,21,26,31],
may however be not obvious, especially for s41: as item
dimension increases, the time for item placement in – or cut
from – a bin may change very much from pattern to pattern);

(ii) due-dates integer multiple of cut time (irrelevant for other cost
functions, such as tardy jobs, but generally not irrelevant for
lateness).

1.2. Literature review

Scheduling objectives in cutting and packing problems are
receiving increasing attention. Among many papers concerned on
cutting (see bibliography), [2,7,21] are the most recent and the
closest to our situation:

� Reference [21] proposes an integer programming based heur-
istic to minimize a combination of trim-loss (¼Cmax) and total
weighted tardiness.

� Reference [2] addresses the same problem as [21] by exact
models, either with or without column generation. The model
has variables associated with time-periods: in order to limit the
number of variables, period lengths are adjusted by an ad-hoc
procedure.

� Reference [7] develops a genetic heuristic for 2-dimensional,
non-oriented, single bin size trying to approximate the Pareto
frontier for the criteria of bin and maximum lateness minimiza-
tion: this is the problem considered by us, although our
computational experience is limited to 1-dimensional packing.

Parallel machine scheduling is a classical counterpart of bin
packing: instead of being minimized, bins are given and the typical
objective is to minimize the makespan (intended as the maximum
load of a bin). Indeed, bin packing and parallel machines sche-
duling can be seen as “orthogonal” special cases of CUMULATIVE

RESOURCE SCHEDULING [16], a problem in which each job consumes
some amount of a shared resource up to availability.

A more general additive criterion is considered in [9,27–29],
where precedence or time-indexed formulations are developed

and decomposed in order to solve the problem by column
generation:

� Reference [9] formulates P J
P

f jðCjÞ using decision variables
that describe precedence relations among jobs on any machine;
the master problem derived from reformulation is in the shape
of SET PARTITIONING.

� Reference [27] focuses on P J
P

wjCj and directly formulates the
decomposed problem with variables associated to feasible
machine schedules. See also [28].

� Reference [29] assumes the general criterion
P

f jðCjÞ, and – as
in our case – decomposition is applied to a time-indexed model.
Unlike our case, however, jobs have non-unit processing times
and do not consume other resource but time: the problem has
therefore a special structure (interval matrix).

The time-indexed approaches listed above are very close to
ours: the main difference is that we do not deal with a parallel-
machine setting, therefore Dantzig–Wolfe decomposition is
applied to different formulations.

A final note on complexity: P J ðα1Cmaxþα2LmaxÞ is NP-hard for
two machines and any values of α1;α2 Z0 with α1þα2 ¼ 1; when
due dates are identical, the problem becomes MULTIPROCESSOR SCHE-
DULING. On the other hand, 1JCmax is trivial and 1JLmax can be
solved in nlog ðnÞ time by Early Due Date priority rule (EDD).
Whatever are the due dates, a schedule minimizing Lmax is
necessarily active [20, ch. 2], hence its Cmax always equals the sum
of processing times. Thus, 1J ðα1Cmaxþα2LmaxÞ has the same opti-
mal solution as 1JLmax. For a comprehensive discussion on mul-
ticriteria scheduling problems see [25].

1.3. This contribution

Since bin packing is equivalent to cutting stock with unit
demand, one can tackle due dates by a formulation of the cutting
stock problem as in [2]. The general method is close to that applied
to parallel scheduling in [27,28]. The objective here considered
replaces however total tardiness with maximum lateness (see also
[7]): with time-indexed formulations a min-sum term can in fact
be less problematic because, unlike min-max, does not need
activation constraints.

In this paper we show how to obtain guaranteed approxima-
tion algorithms for this problem from existing guaranteed
approximation algorithms for BIN PACKING. We also propose exact
Mixed Integer Linear Programs based on time-indexing, and
improve them by a careful use of lower and upper bounds so as to
solve difficult problem instances. The main dataset for the
numerical experiments was constructed on non-IRUP bin packing
problems from the literature: with our approach, we were able to
solve in few seconds problems with up to 120 parts and, for pro-
blems with 200 parts, reach very small gaps (less than 2%) in
acceptable time (less than 600 s).

Formulations and an approximation result are detailed in Sec-
tion 2. We investigate ways to improve the formulation so as to
address quite large problem instances: a key issue to achieve
efficiency is to take advantage of lower and upper bounds to Cmax,
Lmax and to the global objective function (1). The bounds and their
implementation in the formulations are discussed in Section 3. A
computational experience based on [12] and mainly focussed on
α1 ¼ α2 proves the validity of the method, and is reported in
Section 4. Conclusions and directions for future research are drawn
in Section 5.
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