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Abstract

A finite element method often leads to large sparse symmetric and positive definite systems of linear equations. We consider parallel
solvers based on the Schur complement method on homogeneous parallel machines with distributed memory. A finite element mesh is
partitioned by graph partitioning. Such partitioning results in submeshes with similar numbers of elements and, consequently, subma-
trices of similar sizes. The submatrices are partially factorised. The time spent on the partial factorisation can be different, i.e., disbal-
anced, because methods exploiting the sparsity of submatrices are used. This paper proposes a Quality Balancing heuristic that modifies
classic mesh partitioning so that the partial factorisation times are balanced, which saves overall computation time, especially for time

dependent mechanical and nonstationary transport problems.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Parallel computers have become a popular and wide-
spread tool for solving large scientific and engineering prob-
lems. Parallelisation of sequential algorithms may involve
considerable changes. Algorithms for solving systems of lin-
ear equations are an important example. In this paper, only
the finite element (FE) method [1,2], and large sparse sym-
metric and positive definite linear systems are considered.
Parallelisation of classic direct methods for solving linear
systems, such as the LDL factorisation, is not easy and only
partial success has been achieved [3]. The parallelisation of
iterative methods, such as the conjugate gradient method,
is easier. However, convergence properties are not always
optimal. Methods based on at least two level approaches
have significantly better properties. Domain decomposition
methods are an example of such methods [4-7].
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The parallel solvers should be faster than sequential
ones. Ideal time reductions cannot be obtained if the pro-
cessor loads are not balanced. Load balancing describes
the fact that all used processors execute an identical or
nearly identical number of operations. A slightly disbal-
anced load of processors is acceptable in problems where
the linear system is solved only once. A typical example
of such problems is the static linear problem. On the other
hand, there are problems such as creep analysis or non-
stationary heat transfer where numerous time steps are
needed. Each time step involves the solving of a linear sys-
tem in the case of the implicit method. Every slightly dis-
balanced load in such cases is significantly amplified and
the best possible load balancing is desirable.

In this paper, only the Schur complement method is con-
sidered for domain decomposition. Typically, the FE mesh
is represented by a graph that is partitioned by graph parti-
tioning. It produces submeshes with similar numbers of ele-
ments and nodes. Consequently, submatrices of similar sizes
are assembled on each submesh. The Schur complements
are computed by partial factorisation from the submatrices
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and the reduced problem is usually solved with a suitable
iterative method. Common methods for partial factorisa-
tion exploit the structure of submatrices, i.e., the number
and positions of nonzero matrix entries [8,9]. Therefore,
the computational complexity of the partial factorisation
depends more on the structure than on the size of a subma-
trix and classic mesh partitioning may not result in good
load balancing. This problem has already been observed
[10,11], but has not yet been resolved satisfactorily.

This paper deals with a static load balancing technique
for the Schur complement method and homogeneous par-
allel computers with distributed memory. This technique
is called a Quality Balancing (QB) heuristic and its preli-
minary version appeared in [12]. As the QB heuristic pro-
longs the time spent on mesh partitioning, its advantages
appear in problems where several linear systems with the
same structure need to be solved.

This paper is organised as follows: Sections 2 and 3
describe time dependent mechanical and nonstationary
transport problems. Sections 4 and 5 explain Schur com-
plement methods for a parallel solution of a linear system.
Classic mesh partitioning is described in Section 6 and the
QB heuristic is proposed in Section 7. Some illustrative
results of solutions to practical problems are presented in
Section 8. Finally, Section 9 concludes the paper.

2. A time dependent mechanical problem

For the purposes of this paper, a time dependent mechan-
ical problem denotes a problem that depends on time, but
the inertial forces are negligible. A typical example of such
a problem is creep analysis [1].

Time dependent mechanical problems are usually for-
mulated in the rate form

Kif:f+/BTD.éf"dV7 (1)
Vv

where K denotes the stiffness matrix of the problem (do-
main), r denotes the vector of nodal displacements, f
denotes the vector of prescribed nodal forces, &, denotes
the irreversible strains, D denotes the stiffness matrix of
the material, B denotes the strain—displacement matrix,
and V" denotes the volume of the domain considered. The
superimposed dot denotes the time derivative. Eq. (1) is
solved by a numerical method that discretises time. The
number of time steps is denoted by N,. The basic steps
are summarised in Table 1. The method described in Table
1 is explicit and the particular expression for irreversible
strain increments depends on the material model used.
The algorithm can be applied to visco-plastic problems as
well as creep analysis. The increments of irreversible strains
are not specified in more detail in Table 1 because they are
not the focus of this paper.

The most time consuming part of the algorithm is the
computation of displacement increments that consist of
solving a system of linear equations

KAri = Afii + AfZH <2>

Table 1
An algorithm for time-dependent mechanical problems

For i =0 until i < Ny compute

Increments of irreversible strains A&l
Increments of internal nodal forces Af ", = [, BTDA&"dV
Increments of external (prescribed) nodal — Afiyy =fltir1) — A)

forces

Increments of displacements

New vector of displacements

Total strain increments (previous total
strain g; is stored)

Stress increments

New stresses

Aricy = K~ (A + M)
Fir1 =it Arigy
Agiry = Briy) — &

Acii1 = D(Agiyy — Aeh)
61 =06;+ Aoy

3. Nonstationary transport problems

Nonstationary transport problems are also considered
in this paper. They are similar to time dependent mechan-
ical problems in the sense that several time steps are used to
solve them [2].

Basic facts can be shown on an example of a heat trans-
fer with constant coefficients, which is described by the
equation

T T T or
k(ax2+6y2+622) =P 3)

where T denotes the temperature, k denotes the coefficient
of conductivity, p denotes the density of the material, and ¢
denotes the thermal capacity. After space discretisation, a
system of ordinary differential equations is obtained in
the form

C%—de:f, (4)

where C denotes the capacity matrix, K denotes the con-
ductivity matrix, d denotes the vector of nodal unknowns,
and fdenotes the vector of prescribed fluxes. This system of
equation (4) is then discretised in time using

di =d;+ Atviy, (5)
vivo = (1= 0)v; + Ovipy, (6)
where the first time derivative of nodal values is denoted by
v. Substitution of (5) and (6) into (4) results in the system of
linear equations

(C—’—AIHK)VH,I :fi+1 —K(dl+At(1 _H)V,') (7)

with unknown vector v;41. Nodal values are obtained from
Egs. (5) and (6).

4. The Schur complement method

This section summarises only the basic facts about the
Schur complement method [4,6,7]. It is based on a special
form of the linear system of equations

Ax =y (8)

that has to be written in the form
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