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a b s t r a c t

To perform a mechanical simulation of a component, its geometrical model usually needs to be simplified
in accordance with the hypotheses on its mechanical behaviour. Here, the preparation and the simplifi-
cation of the model for the structural analysis act upon an intermediate polyhedral representation and
take into account the mechanical hypotheses specified on the product shape. An a posteriori mechanical
criterion has been incorporated into this process to bring an objective estimation of the model simplifi-
cation. The a posteriori criterion can be applied to FE problems of linear static analysis or thermal prob-
lems for stationary linear conduction and is able to estimate the influence of shape transformations over
the global analysis results. If a shape detail removed during the shape simplification process proves to be
influent on the mechanical behaviour, it can be re-inserted on the simplified model, so readapting the ini-
tial simulation model. In this article, the focus is on the description of the geometric operators supporting
the automatic process of FE model preparation.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

During the product development process, the simulation stage,
commonly named ‘‘engineering analysis”, evaluates the physical
behaviour of a product component subjected to various kinds of
loads and boundary conditions. Finite element (FE) approaches
are techniques widespread in industry to analyse the mechanical
behaviour of a component. A FE analysis gives useful information
about the component’s mechanical behaviour, helpful for ensuring
that design requirements are satisfied. The meaningfulness and
accuracy of a FE computation are the main user’s concerns. Among
the possible sources of error that could affect the quality of the FE
results, we can mention inappropriate domain discretization and/
or uncertainty about the boundary conditions [1–4].

Yet, the transformations performed on the component shape
are a critical element to take in account, and their choice and con-
trol are of essential importance. Indeed, models generated during
the design process need to be prepared before performing a
mechanical simulation. Using CAD models, resulting from a design
process and dedicated to manufacturing purposes, could introduce
some problems of FE mesh generation and solving. Therefore, the
generation of models for structural behaviour simulation needs
several steps of shape adaptation and idealization [5–7], where
shape sub-domains having negligible influence on the FE analysis

are removed. The choice and evaluation of the corresponding shape
simplifications to perform is of primary importance.

Many approaches were developed on this topic, centred on
some a priori criteria. These criteria act before performing a FE
analysis, and drive and control the shape changes that occur on
the component. They can be either subjective, i.e. based on the
user’s expertise [8,9], or objective, i.e. based on geometrical criteria
linked to some mechanical properties of the problem (like varia-
tion of volume and mass) [10,11]. Nevertheless, a priori criteria
are not able to quantify accurately the real influence of a shape
simplification on some parameters of the FE simulation output.
In fact, they cannot refer to quantities obtained from the simula-
tion results, like displacement and stress fields. Therefore, a more
precise mechanical criterion needs an a posteriori approach. In
such a case, this criterion is applied after performing a FE simula-
tion on a simplified model, and is targeted on some objective
parameters, like stresses, strains or strain energy. Although some
a posteriori approaches exist [12], no much work has been dedi-
cated to this topic yet.

We developed an a posteriori criterion [13] that can be applied
to FE problems of linear static analysis or thermal problems for sta-
tionary linear conduction. It uses an approximation of the energy
norm of the difference between the FE solution on the initial and
simplified model, and it is able to evaluate the influence on global
simulation results caused by shape details removal. The use of an a
posteriori FE error estimator can be incorporated in an adaptive
process of geometric simplification [14]. In fact, the shape of the
simplified part could be adapted after a first simulation, depending
on the influence of its removed details on the FE results.
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The paper is an updated and revised version of the conference
paper [15], and is structured as follows. Section 2 explains the prin-
ciples about the developed a posteriori influence indicator and Sec-
tion 3 describes the overall scheme of the adaptive simplification
process where this indicator is employed. Section 4 introduces
the concept of ‘‘simplification detail” and some of the correspond-
ing shape modification operators. Finally, Section 5 illustrates how
to prepare the FE problem for applying the a posteriori indicator,
and how to interpret indicator’s results.

2. A posteriori error indicator

The developed indicator can be applied in FE static computation
of linear elastic structures. As shown in Fig. 1, two categories of
shape changes are taken into account according to the geometric
domain variations:

– Addition of the sub-domain CA.
– Subtraction of the sub-domain CS.

2.1. Influence of a shape transformation

Using the example shown in Fig. 1, here we briefly explain how
the a posteriori indicator is computed [13]. Let us assume that the
solution of the initial FE problem over the domain X1 returns the
displacement field ~U1, the stress field ��r1 and the strain field ��e1.
We call oX1 the boundary of X1. In the same way, ~U2, ��r2 and ��e2

are the solution fields of the simplified FE problem on the simpli-
fied domain X2, having oX2 as boundary.

We can assume that the simplified problem matches exactly the
first one, i.e. the error vanishes, if:

– On the intersection of the two domains, i.e. (X1 \X2), the
initial and simplified problem solutions are equal.

– Over the sub-domain CA, the stress and strain fields, ��r2 and
��e2 respectively, are equal to zero.

– Over the sub-domain CS, the stress and strain fields, ��r1 and
��e1 respectively, are equal to zero.

To estimate the influence of these shape modifications, we need
to assess:

– the difference ð~U1 � ~U2Þ over the common sub-domain
(X1 \X2);

– the stress field ��r2 over CA;
– the stress field ��r1 over CS.

We used an energy norm to measure these quantities. The cor-
responding error, e, is given by

2e2 ¼
Z

X1\X2

��r1 � ��r2
� �

: ��e1 � ��e2
� �

dXþ
Z

CA

��r2 : ��e2 dX

þ
Z

CS

��r1 : ��e1 dX: ð1Þ

In the case where the boundaries of the simplified sub-domains CA

and CS are free, i.e. null Neumann conditions are applied, we can
simplify Eq. (1) and obtain Eq. (2). Here, ~nX is the normal vector
pointing outward from the domain X, and ~f d designates the volu-
metric field of forces applied to X. Then

2e2 ¼
Z

CA

~f d � ~U2 dXþ
Z

CS

~f d � ~U1 dXþ
Z

oCA\oX1

��r2 �~nCA

� �
� ~U1 doX

þ
Z

oCS\oX2

��r1 �~nCS

� �
� ~U2 doX: ð2Þ

The error e is an absolute error. A more meaningful relative error, g,
can be expressed in terms of the strain energy of the problem, as

g2 ¼ e2

1
2

R
X1

Tr ��r1
��e1

� �
dX
� e2

1
2

R
X2

Tr ��r2
��e2

� �
dX

: ð3Þ

The computation of the error e with Eq. (2) would need to know
the solution on the initial domain X1 (quantities with subscript 1).
Since our aim is to avoid solving the initial FE problem, this initial
solution is unknown. Therefore, we estimate it by using a local FE
computation over a sub-domain surrounding each suppressed de-
tail, that we name X2S or X2A, depending on whether it surrounds a
subtractive or an additive sub-domain. Fig. 2 shows an example of
such sub-domains’ surrounding, with reference to the sub-do-
mains removed in Fig. 1. According to the removed sub-domain’s
type we have DS = CS [X2S or DA = CA [X2A.

If we address shape simplifications of subtractive type, we have
a reduction of the initial model X1 following the subtraction of the
sub-domain CS, where CS and the neighbouring sub-domain X2S

are adjacent. The stiffness of DS is computed as the sum of the stiff-
nesses of the FE meshes of CS and X2S. In contrast, the case of
shape simplifications of additive type, implies an increase of the
initial model X1 due to the addition of a sub-domain CA. CA is
completely immersed in its neighbouring sub-domain X2A and
the stiffness of DA is computed as the difference between the stiff-
nesses of the FE meshes of X2A and CA.

The boundary conditions of the FE local problems on DS and DA

are given by the displacement field ~U2, which results from the FE
computation over the simplified problem X2. Bold lines in Fig. 2
correspond to the boundaries where displacements from the field
~U2 are applied.

Local FE computations allow us to give an estimation of the rel-
ative error, eest, as

Fig. 1. Simplification example: an initial domain X1 and the corresponding
simplified domain X2. To produce X2 the sub-domain CA is added and the sub-
domain CS is subtracted from X1.

Fig. 2. Neighbouring sub-domains, X2S and X2A, for the FE local computations
around CS and CA, respectively, related to the example of Fig. 1.
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