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a b s t r a c t

A super-eleme nt remeshing technique is developed to model cohesive crack growth based on the linear 
asympt otic superposition assumption. The remeshing operation only occurs along the crack path. Mesh 
size is refined merely at the crack-tip super-element. The stress intensity factors are solved semi- 
analytically by the scaled boundary finite element method, sufficient accuracy can be ensured. The 
cohesi ve tractions are treated as side-face forces, and the induced displacement field can be sought as
a particular solution to the governing differential equations. Numerical examples validate the efficiency
and accuracy of the proposed approach.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction 

In recent years, considerabl e research effort has been devoted to
model crack development in structures made of quasi-brittle mate- 
rials such as concrete. Discrete crack models based on either the 
linear elastic fracture mechanics (LEFM) or nonlinear fracture 
mechanics (NFM) have been employed to predict crack propaga- 
tion in concrete structures [1–9]. Whether the LEFM- or NFM- 
based models apply depends on the size of the fracture process 
zone (FPZ) relative to the structura l dimensions. FEM-and 
BEM-based discrete crack models are two most common models 
in fracture analyses for their respective unique features. In order 
to evaluate the fracture parameters (e.g. singular stresses and 
stress intensity factors (SIFs) etc.) accurately, FEM-based models 
need enriching crack-tip meshes or introducing singular crack-tip 
element, which unduly exacerbate the complexi ty in remeshing 
algorithm. The BEM-based models avoid a large part of the 
remeshing because only the boundary of the domain needs to be
discretized, it has gained considerable success in crack analysis 
[10–15]. However, BEM requires fundamenta l solutions and the 
solutions are rather complicated , these disadvantag es may weaken 
its merits.

The extended finite element method (XFEM) has shown enor- 
mous potential in modelling cohesive crack propagation without 
remeshing [16]. Nevertheles s, in case the crack propagat ion path 
is a priori unknown, a dense initial mesh must also be required 
to predict crack propagation path with sufficient accuracy in the 
high stress-singul ar regions. Meshfree or meshless methods 
[17–22] are attractive in some cases.

The scaled boundary finite element method (SBFEM) develope d
by Wolf and Song [23–27] is a new semi-anal ytical approach com- 
bining more than the advantages of FEM and BEM. The modelled 
spatial dimension is reduced by one, only the boundary of the 
domain and the common edges of super-ele ments are discretized.
Difficulties arising from singulari ties at the crack-tip can be
circumve nted because stresses are solved analytically in the radial 
direction. This enables the SIFs directly extracted from the stress 
solutions at nodes on the domain boundary or common edges of
super-ele ments without further enriching crack-tip meshes or
introducing singular elements [28–30]. Yang and Deeks [31,32]
proposed a two-step FEM–SBFEM coupled method to model cohe- 
sive crack propagation . They use LEFM to predict crack paths and 
incorporate cohesive interface finite element (CIE) to take into ac- 
count the cohesive tractions in the FPZ. Ooi and Yang [33] extended
it to deal with multiple crack propagation in concrete. However,
inserting CIE into the crack paths after remeshing faces some diffi-
culties, the authors proposed a ‘‘shadow domain’’ method to ease 
the treatment. In addition, the core subdoma ins may become so
distorted in case of complex crack path and there is difficulty to
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place the scaling centre such that the full boundary can be visible 
from it. Later, Ooi and Yang further improved their approach with a
novel hybrid FEM–SBFEM method [34,35].

In this study a remeshing technique based on SBFEM is pro- 
posed, which has the advantag es that the mesh layout of super- 
elements in the domain can be done in such a way to best fit the 
crack growing path and the density of discretization nodes along 
the sides of super-ele ments are specified to meet the desired accu- 
racy of the results. A linear asymptotic superpos ition assumption 
[36] is made to simplify the computation, the cohesive tractions 
to model energy dissipation in the FPZ are treated as side-face 
forces and the induced displacement field and stress field can be
solved analytically without additional effort such as inserting the 
CIEs in the crack path. As a result, the whole problem can be han- 
dled as a linear elastic one. Only the linear elastic fracture mechan- 
ics (LEFM) criteria is needed to predict the crack trajectory. And the 
crack growth is judged from vanishing of the mode-I SIF KI in the 
crack propagation direction (see Moes and Belytschko [16] and
Yang and Deeks [31,32]).

The contents of this paper are organised as follows. The funda- 
mentals of the SBFEM and the technique of extractin g SIFs based 
on the theory of LEFM are firstly presented and followed by the 
super-eleme nt remeshing technique. Then the concept of the linear 
asymptotic superposition assumpti on and the algorithm to calcu- 
late KI with the cohesive tractions in the FPZ are addressed. Finally,
a single-notch ed three-point bending beam and a single notched 
four-point shear beam are analysed using the proposed method,
and the results are compare d with experimental data and those 
available in the literature, fairly good agreement is reached.

2. Basic theory of SBFEM and calculation of SIFs for traction- free 
cracks using SBFEM 

The fundamenta ls of the SBFEM may be found in the publica- 
tions [24,26–30,37] and only some key equations for the develop- 
ments in this paper are summarized .

As shown in Fig. 1a, the domain is convenientl y divided into a
few super-eleme nts whose size and shape can be arbitrary , and 
only the visibility from the scaling centre is considered. A typical 
super-ele ment is depicted in Fig. 1b, only the boundary is discre- 
tised. The SBFEM coordinates are defined as n and g, where dimen- 
sionless radial coordinate n pointing from the scaling centre O to a
point on the boundary , with n = 0 at O and n = 1 on the boundary. g
is running in the circumferen tial direction parallel to the boundary.

The governing equations derived using Galerkin’s weighted 
residual method [38] are expresse d as follows 

E0
h i

n2fuðnÞg;nn þ E0
h i

� E1
h i

þ E1
h iT

� �
nfuðnÞg;n � E2

h i
fuðnÞg

þ nfFtðnÞg ¼ 0 ð1Þ

where coefficient matrices [E0], [E1] and [E2] depend on the geome -
try and mater ial properti es of the elements, they are independen t of
n, discretization only on the boundary is needed. {Ft(n)} denotes the 
surface tractions or loads on the side-face s (or crack faces, see OB,
OC in Fig. 2). {u(n)} represents the nodal displacemen ts.

For homogeneous case without loads on the side-faces {Ft(n)} = 0,
Eq. (1) is transformed into the first order ordinary differential equation
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{q(n)} is the internal nodal forces correspon ding to nodal displace -
ments {u(n)}.

Solve the standard eigenvalue problem 

½Z�½U� ¼ �½U�½K� ð4Þ

½K� and [U] are partitio ned into 

½K� ¼
�½ki�

½ki�

� �
; ½U� ¼

½U11� ½U12�
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� �

where eigenv alues appear in pairs and real component s of ½ki� are
positive.

Fig. 1. The concept of the scaled boundary finite-element method: (a) subdomain- 
ing of a domain, (b) super-element 4.

Fig. 2. A cracked domain modelled by super-element with scaling centre at the 
crack tip.
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