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a b s t r a c t

A new linear model for beams with compact or thin-walled section is presented. The formulation is based 
on the Hellinger–Reissner principle with independent descriptions of the stress and displacement fields.
The kinematics is constituted by a rigid section motion and non uniform out-of-plane warpings related to
shear and torsion. The stress field is built on the basis of the Saint-Venànt (SV) solution and with a new 
part to describe the variable warping.

The formulation of a finite element with exact shape functions made possible to validate the beam 
model avoiding discretization errors.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction 

3D beams with thin-walled or compact section are widely used 
in engineering practice and the improvement of both continuum 
models and FEM solution procedures represents a primary task 
for researchers.

Saint-Venànt (SV) rod theory, see [1], is a powerful theoretical 
basis for deriving beam models to be used in standard 3D frame 
analysis [2,3] because it allows an accurate one-dimensional 
description of the 3D continuu m behaviour in terms only of
cross-sectio n generaliz ed parameters. Subsequent extensions, like 
that of Ies �an [1], allows the SV solution also to be exploited for 
non-isotropi c and non-homogeneou s materials . In some cases of
loading and boundary conditions, for example torsion actions ap- 
plied to open profiles, the structural behaviour is not correctly de- 
scribed by the SV theory. In particular the end effects due to
variable warping along the beam axis could produce important 
additional normal and shear stresses which are not negligible.
Following the pioneering work of Vlasov [4] much researche s has 
been devoted to the formulation of mechanical models capable of
describing this phenomeno n accurately. The initial theory has been 
notably refined in terms of both the theoretical aspects, for exam- 
ple see [5,6], and the numerical methods of analysis [7–10]. The 
main part of these works is focused on the analysis of thin-wal led 
profiles which can be reasonably described using the sectorial 
areas theory, while more recent contributions extended the range 

of applicati on by proposin g beam theories suitable for the FEM 
analysis of one-dimensi onal structures with generic cross-sections 
and subjected also to non-unifor m shear warping effects [11,12].

In the present work a linear beam model to account for the var- 
iable warping due to shear and torsion is derived. Its main feature is
the way it maintains all the details of the exact SV solution in order 
to analyze beams with generic sections. This goal is reached by for- 
mulating the model on the basis of the Hellinger–Reissner varia- 
tional principle, in which both the stress and displacemen t fields
are described independen tly. With respect to beam theories derived 
only on the basis of kinematical hypothes es, the mixed formulation 
proposed allows a better evaluation of some 3D effects recovering,
as subcase, the standard SV behaviour exactly. In particular , the 
kinematical description maintains, as other compatible models 
[12,8], a rigid section motion and out-of-plan e deformations repre- 
sented by the SV shears and torsion warping functions indepen- 
dently amplified along the beam axis. The stress field is more 
accurately evaluated as the sum of the exact contribution due to
the SV solution and to some further terms due to variable warping.
The assumed fields are introduced in the Hellinger–Reissner func- 
tional to obtain an accurate Ritz–Galerkin approximat ion of the 
beam model in terms of generaliz ed static and kinematic quantities.

The work is focused on isotropic beams, however the SV solu- 
tion is formulat ed in a way that allows, following the Ies �an ap- 
proach [1], a possible extension to more general cases such as,
for example, sections composed of several materials . The descrip- 
tion of the stress field induced by the non-uniform warping is ob- 
tained on the basis of two distinct approaches which differ in the 
evaluation of the shear contributions . Both approaches account 
for the contribution of the shear stresses due to variable warping 
neglected in standard formulat ions based on Vlasov assumption.
The first one uses a Benscoter-like [6] expression, deriving the 
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stresses in a way similar to the kinematical description used in
[12]. The second approach, denoted as Jourawsky-like, evaluates 
this contribution through the equilibrium equation in the axial 
direction, requiring the evaluation of 3 additional warping func- 
tions on the cross section domain.

The models proposed are sufficiently accurate but simple en- 
ough for use in technical applicati ons, avoiding the onerous section 
analysis of more sophisticated formulations currently used for 
composite beam [13–15]. These ones are potentially very accurate 
but require major computational effort due, for example, to the 
solution of a quadratic eigenvalues problem. On the contrary the 
proposed formulation only requires the evaluation of a few warp- 
ing functions that can be performed using a FEM approach like 
those presente d in [2,3] (see also [16,11] for a solution based on
the Boundary Element Method). The section compliance matrix,
recovered from the stress field obtained, accounts for all the cou- 
pling effects arising from the 3D problem and is valid for the larg- 
est variety of cross sections (compact, thin/thick walled ones). Note 
that the mechanical properties of the cross section (principal flex-
ural directions, flexural, torsional and bimoment inertia, shear cen- 
ter, etc.) always have to be preliminarily calculated. Their 
evaluation using simplified solutions specializ ed for thin walled 
beams are unnecessary because, as discussed in detail in [2], the 
computational cost required for a numerical evaluation of the 
warping functions is limited even when fine meshes are used.

The validation of the proposed models is performed by means of
a mixed finite element formulat ed on the basis of exact shape func- 
tions. In particular the static fields interpolation exactly satisfy the 
homogeneous form of the equilibrium equations adopting an expo- 
nential distribution of the bi-moments and bi-shears , while the 
resultant force and moment are constant and linear respectivel y,
as in standard beam models. The static interpolation also allows 
the discrete form of the strain energy to be evaluated exactly with- 
out using any explicit displacement interpolations . Externally the 
element exposes kinematical parameters only, thanks to the use 
of static condensati on so reducing the global computational efforts.
The finite element proposed has no discretization error. This fea- 
ture allows us to perform the numerical experimentati on focusing 
attention only on the beam model approximat ion. The numerical 
tests presented regard single or framed beam structures and the 
results obtained are compared with those proposed by other 
authors or calculated by using shell or solid FEM analyses.

As a final comment observe how the mixed model adopted here 
is particularly suitable for the extension to geometrical ly nonlinear 
analyses using corotational strategies [17–20] where displace- 
ments and rotations require complex change-of-obse rver rules on
the contrary the stresses are not affected by this change. The use 
of a formulation valid for generic cross sections, that refers all 
the variables to the same axis and which is able to detect eventual 
coupling between torsional and shear warping, is a further advan- 
tage especially in the geometrically nonlinear case [21,20].

2. The generalized SV solution 

In this section the standard SV solution is briefly described in a
form which is easy to frame in the approach proposed by Ies �an [1]
whose main advantage consists in the possibilit y of also analyzing 
inhomogene ous and anisotropic materials. For a review of the clas- 
sical SV problem we refer also to [3,2].

2.1. The standard SV solution 

Let us consider a cylinder occupying a reference configuration B
of length ‘ confined by the lateral boundary (the so called mantel)

denoted by @B and two terminal bases X0 and X‘ on which the 
external forces are applied.

The cylinder is referred to a Cartesian frame ðO; x1; x2; x3Þ with
unit vectors {e1,e2,e3} and e1 aligned with the cylinder axis. From 
now on we assume the reference system aligned with the principal 
axes of inertia of the cross-sec tion and its origin located in the cen- 
troid. In this system, see Fig. 1, we denote with X the position of a
point P

X ¼ X0 þ x with
X0 ¼ se1

x ¼ x2e2 þ x3e3

�

where X0 represents the position of P with respect to the beam axis,
s is an abscissa which identifies the generic cross-se ction X[s] of the 
beam and x is the position of P inside X[s].

The displacemen t field u[X] of the standard SV solution can be
expresse d, apart from an inessential rigid displacemen t field, as a
function of 6 coefficients bi in the following form:

u½X� ¼ u0½s� þu½s� ^ xþ ux½s; x� ð1aÞ

where ^ denote the cross product and 

u0½s� ¼
sb1

� 1
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� 1
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2
64

3
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2
64

3
75:

u02 and u03 are the second and third component s of u0 and the com- 
ma indicates the derivativ e operation . The function ux[s,x] assumes 
the following expression 

ux½s; x� :¼
X6

i¼1

�bi½s�uðiÞx ½x�; �bi½s� ¼ bi þ sd2ib5 þ sd3ib6 ð1bÞ

dij being the Kroneker delta and 
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Note how uðiÞx ði ¼ 1 . . . 3Þ represe nt the in–plane deformations due 
to Poisson effects and uðkÞx ðk ¼ 4 . . . 6Þ are the shear and torsiona l
out–of–plane warpings.

The components wðkÞ1 ðk ¼ 4 . . . 6Þ will be denoted from now on
simply as x1, x2 and x3, and collected in the vector x[x] = {x1, -
x2,x3}. They are evaluated by means of the equilibrium equation s
once the strain e has been obtained from the compatibilit y condi- 
tion and the stress r from the elastic constitutive laws 

x;22 þx;33 þ 2x ¼ 0 2 X

n2x;2 þ n3x;3 ¼ g 2 @X

�
; g ¼

x3n2 � x2n3;

m x2
2�x2

3
2 n2 þ x2x3n3

� �
�m x2

2�x2
3

2 n3 � x2x3n2

� �
2
6664

3
7775; ð2Þ

where n = {0,n2,n3} the direction normal to @B.
Letting s = re1 = {r11,r12,r13} be the traction applied on the 

generic cross section the six constants bi are evaluated in terms 
of the beam section resultant force N[s] and moment M[s]

N½s� ¼
Z

X
sdA; M½s� ¼

Z
X

x ^ sdA: ð3Þ

The solution is defined apart from a self equilibrated stress state 
which depends on the exact force distribu tion on the end bases.

From now on, to simplify the notation, the dependence of the 
quantities on s and x will be omitted when clear from the context.
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