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a  b  s  t  r  a  c  t

Wooden  structures  are  quite  complex  with  respect  to their  material  properties  as  well as  to their  struc-
tural  response  and,  therefore,  need  to  be simulated  appropriately  by  means  of  numerical  methods.  This
review  provides  an  overview  of  current  simulation  techniques  in  static  and  dynamic  analysis  with  respect
to  wood  material  models  and  their  numerical  realisation  in  their  comprehensive  complexity.  The  basic
orthotropic  elastic  formulation  of  wood, a possible  extension  to  a viscoelastic,  viscoplastic  formulation
and  the  consideration  of  brittle  failure  are  presented  in  terms  of  the  finite  element  method,  which  is
proposed  as  the preferred  tool  for the  analysis  of  complex  structures  with  highly  nonlinear  behaviour.
Furthermore,  models  describing  the dependency  on climate  conditions,  long-term  treatment  and  ageing
are introduced.  Since  there  is still  a lack  of  understanding  and  a lack  of  data,  it  is  adverted  to  further
research  effort  in  these  domains.  In  the  wide  field  of  dynamic  analysis  of wooden  structures,  examples
and  approaches  are  presented.  Subsequently,  theories  for taking  into  account  the  uncertain  nature  of
wood  in  its  micro-  and  macro-structure  and  a numerical  example  will  round  this  review  off.

©  2016  Elsevier  Masson  SAS.  All  rights  reserved.

1. Introduction

“The making of violins, cellos, pianos, and other musical
instruments was an art long before being an object of scientific
investigation. Architectural wood structures are artists’ represen-
tations that rely on the advanced achievement of mechanics. The
scientific knowledge of wood properties and characteristics is a
necessary step toward its best use in artistic representations.” With
this quotation of Adriano Alippi [13], this review in numerical wood
mechanics shall be introduced, since musical instruments show the
entirety of the presented load and climate dependent mechanisms
in wooden structures as an important field of application.

Complex structures, like music instruments, are the useful field
of application for numerical analyses. A complex geometry and
nonlinear material behaviour make an analytical solution impos-
sible. Thus, numerical simulations by the finite element method
(FEM) are needed. It is distinguished between static and dynamic
investigations. Since the former is the special case of the latter one,
it can be solved with less effort than the general dynamic analysis.
The properties of wood remain the same, although more charac-
teristics, like e.g. inertia and damping forces are needed for the
latter case. For an appropriate simulation, eligible material models
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have to be applied to describe the material’s behaviour and, thus,
the structure’s response to mechanical or climate load, static or
dynamic load.

In this review, the most relevant material characteristics with
focus on engineering parameters and their modelling in terms of
an FE-analysis are presented. Due to the complexity of this issue,
no guarantee for completeness is given. The models are just briefly
introduced, but the references enable further studies.

2. Material modelling

Wood is an inhomogeneous, anisotropic and porous material
with moisture-, temperature- and time-dependent behaviour [70].
In the scope of a realistic three-dimensional analysis by the FEM,
appropriate material models for the description of the macro-
scopical, mechanical response to multi-physical loadings and their
effects on all length scales from micro- to macro-scale are required.
The material formulations are determined by deterministic engi-
neering parameters like Young’s moduli or material strengths as
input quantities. They yield an appropriate deterministic solution
for a structural analysis with the opportunity to apply uncertain as
well as climate- and time-dependent input parameters. A compre-
hensive survey of experimental data can be found in [83].

2.1. Elasticity

A commonly used material model for the description of the
approximately linear (in the range of small strains) and cylindrical
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Fig. 1. Cylindrically anisotropic material directions of wood.

anisotropic behaviour is orthotropic elasticity (e.g. [86,88,92]). The
linear relation between elastic strain ε and resulting stress � is
given by Hooke’s law. For the three-dimensional case, it is denoted
as

� = C : ε. (1)

With the material directions radial, tangential and longitudinal [r,
t, l] (see Fig. 1) and assuming a symmetric, elastic material tensor
C , it can be defined using Young’s moduli Ei, shear moduli Gij and
Poisson’s ratios �ij, i, j ∈ {r, t, l}

(C)−1 =
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. (2)

Although the elastic behaviour is more complex and yields a
nonsymmetric compliance, as can be seen by experiments (e.g.
[68]), Eq. (2) is an appropriate and useful model [10].

2.2. Ductile failure

Strength properties of wood significantly differ for compres-
sive, tensile and shear loading. After exceeding the compression
strength, that often is defined as the end of the elastic range in
material modelling (e.g. [83,86,92]), wood shows a distinct plastic
behaviour. A comprehensive overview of uniaxially loaded wood is
given in [53,70]. Extensive studies on strength properties of biax-
ially loaded spruce wood are published in [19,23]. The theoretical
basics of inelastic behaviour and the numerical implementation
can be found in [99]. First applications of plasticity models in
timber material mechanics are described in e.g. [63]. Although
wooden constructions are built to bear loads in a uniaxial manner
parallel to the grain, complex structures are usually loaded mul-
tiaxially by constraints or multiaxial spatial external forces. Thus,
one of the most recent models in wood mechanics deals with a
three-dimensional multi-surface plasticity formulation. Since in
[23,63], a biaxial formulation is presented, a three-dimensional
multi-surface plasticity formulation is developed in [87], based on
previous approaches [92,95]. With regard to the Tsai-Wu failure
criterion [109], the yield criterion identifies the elastic and ductile
zones by

f (�, q) = � : b : � + q(˛) − 1 ≤ 0. (3)

Fig. 2. Yield surface of the multi-surface plasticity model for compression strengths
fcr = fct =−6 N/mm2, fcl =−43 N/mm2 and q = 0 and �r = �t = [−6 ; 10] N/mm2 and
� l = [−43 ; 10] N/mm2 (see [87]).

The admissable stress state, i.e. elastic zone, is found for negative
values of f (�, q). Inelastic deformations are evoked if the stresses
exceed the elastic limits, thus, values are larger than zero. The
formulation fulfils a C1-continuous transition between the single
yield surfaces, because it does not contain a linear term and, thus,
enables a proper application of the Newton–Raphson algorithm to
find the equilibrium path. The ductile behaviour of wood cannot
be characterised as ideal plastic. Thus, the post yield portion of the
stress–strain curve has to be identified with softening or hardening
features. In [87], hardening after ductile failure is included with the
help of the scalar term q(˛) representing the hardening potential,
a function of the inner strain-type variable  ̨ which describes the
current hardening state. The tensor containing the strengths of the
material is defined by

b = bs ⊗ bf , (4)

with the tensor bs allocating the stress octant, for which the yield
surface has to be defined, depending on the current stress state. The
tensor bf contains the compression strengths, i.e. the elastic limits,
for the material directions

bf =
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The plasticity formulation has to fulfil the Kuhn–Tucker comple-
mentary conditions and is described by an associated flow rule in
the present case. The overall strain (see Eq. (1)) is the sum of both,
elastic and plastic strain

ε = εe + εp. (6)

Fig. 2 shows the assembled yield surfaces (q = 0), whereas the light
grey area describes the stress octant for the combination of all
three failure modes. The middle grey areas describe two failure
modes and the dark grey areas correspond to a single failure mode,
respectively.

2.3. Brittle failure

In the previous chapter, ductile mechanical behaviour of wood is
introduced. Due to the micro-structure of wood formed by cells and
fibres, wood shows brittle failure behaviour for tensile and shear
stresses. In both situations, the cells will suddenly collapse at high
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