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a b s t r a c t

In this paper, we present a novel procedure to improve the stress predictions in static, dynamic and non-
linear analyses of solids. We focus on the use of low-order displacement-based finite elements – 3-node
and 4-node elements in two-dimensional (2D) solutions, and 4-node and 8-node elements in 3D solu-
tions – because these elements are computationally efficient provided good stress convergence is
obtained. We give a variational basis of the new procedure and compare the scheme, and its performance,
with other effective previously proposed stress improvement techniques. We observe that the stresses of
the new procedure converge quadratically in 1D and 2D solutions, i.e. with the same order as the dis-
placements, and conclude that the new procedure shows much promise for the analysis of solids, struc-
tures and multiphysics problems, to calculate improved stress predictions and to establish error
measures.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades, many different stress improvement
procedures have been explored [1–27]. The aim is to reach en-
hanced stress predictions, as part of the solution of the mathemat-
ical models, and to establish solution error estimates [3,4]. If an
effective scheme to enhance the stress predictions were available,
the finite element method could be used with coarser meshes,
reducing the expense of analysis. Furthermore, an effective scheme
to assess the error would be valuable to assure an adequate solu-
tion. Early procedures were based either on stress smoothing
[5,6] or L2 projection techniques [7]; however, these approaches
are not particularly effective and they have hardly been used in
practice.

Considering inexpensive solution error indicators, the stress
band plots proposed by Sussman and Bathe [1,8–10] have been
used extensively, both for linear and nonlinear analyses, but of
course these only give an indication of the solution accuracy – they
do not improve the stress predictions.

The calculation of improved stress predictions is particularly
important if low-order elements are to be used. For example, con-
sidering three-dimensional (3D) solutions, the use of 4-node con-
stant strain tetrahedral elements would frequently be
computationally efficient if the stresses could be predicted to a
higher accuracy than given directly by the displacements. That is,
the constant stress assumption, implied by the assumed linear dis-
placements, is not good in many analyses.

A widely-recognised contribution towards a stress improve-
ment procedure was published by Zienkiewicz and Zhu, when they
proposed the ‘superconvergent patch recovery’ method [11]. This
technique is based on the existence of superconvergent points, also
referred to as Barlow points [12], where the stresses are of one or-
der higher accuracy than at any other point in the element domain.
Appropriate order polynomials approximating the stresses are
smoothly fitted through these points, sometimes in a least squares
sense. Later, variants of the original method were developed to fur-
ther enhance its performance [13–15].

Although the superconvergent patch recovery methods seemed
to work relatively well for certain elements, superconvergent
points do not always exist – e.g. in triangular elements, distorted
isoparametric elements and in elements with varying material
properties (hence nonlinear analyses) – see the discussion by Hiller
and Bathe [16]. Three widely used procedures that do not require
the knowledge of superconvergent points are the ‘posterior equi-
librium method’ (PEM), the ‘recovery by equilibrium in patches’
(REP) method, and the ‘recovery by compatibility in patches’
(RCP) method.

The PEM was proposed by Stein and Ohnimus [17] and is based
on the work published earlier by Stein and Ahmad [18,19]. This
method uses the principle of virtual work to calculate improved
interelement tractions for the purposes of local error estimation
[17,20]. The REP method was proposed by Boroomand and Zie-
nkiewicz [21,22]. This method uses the principle of virtual work
to calculate improved stresses within the finite element domain.
The RCP method was proposed by Ubertini [23] and further devel-
oped by Benedetti et al. [24]. This method uses the principle of
minimum complementary energy to calculate improved stresses
that satisfy point-wise equilibrium. Later, Castellazzi et al.
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established a solution error estimate based on the RCP method to
guide adaptive meshing [25].

All three stress calculation procedures yield impressive results
that exceed the performance of the superconvergent patch recov-
ery method. However, to ensure a well-posed problem for the solu-
tion of the unknown stress coefficients, several assumptions are
employed, and these assumptions limit the accuracy of the results.
Specifically, the PEM assumes that the improved interelement trac-
tions are approximately equal (by a difference minimization) to the
tractions directly-calculated from the displacement solution [17];
the REP method uses element nodal point forces that correspond
to individual stress components [22]; and the RCP method imposes
differential equilibrium for all points in the element [24], a con-
straint which is too severe, as a result the RCP solution is not reli-
able for all classes of problems.

Recently, we proposed the NPF-based method [26,27]. This pro-
cedure also employs the principle of virtual work, but without the
assumptions used in the earlier methods. While the numerical re-
sults in Refs. [26,27] are encouraging, the method still requires to
consider specific element stress domains and some stress averag-
ing. We concluded, see Refs. [26,27], that a variational basis was
necessary to obtain further insight and possibly improve the
schemes.

For various problems in engineering and the sciences – like in
the analysis of (almost) incompressible media, thin structures,
and multiphysics phenomena – optimal finite element discretisa-
tions can only be obtained if mixed variational formulations are
used [1,28–34]. Indeed, in Ref. [35], Mota and Abel show that the
stress smoothing, L2 projection and superconvergent patch recov-
ery techniques are based on the use of the Hu-Washizu principle.

Our objective in this paper is to show that the PEM and the REP,
RCP, and NPF-based methods are also all based, with certain
assumptions, on the Hu-Washizu variational principle, and then
present a novel and significantly improved procedure for stress
predictions. Throughout we focus on the use of low-order displace-
ment-based finite element discretisations of solids, that is, 2-node
elements in 1D solutions, 3-node triangular and 4-node quadrilat-
eral elements in 2D solutions, and 4-node tetrahedral and 8-node
brick elements in 3D solutions. These elements are computation-
ally efficient provided good stress convergence is obtained.

We analyse the new stress prediction procedure in detail for 1D
problems using 2-node elements with arbitrary loading and
material properties (but constant cross-sectional area), and prove
that the procedure is reliable, giving stresses that are, in fact,
optimal stress predictions (in the norm used), with the order of
convergence being quadratic, i.e. the same order as for the
displacements. This order of stress convergence is also seen
numerically in 1D and 2D solutions. In a study, we compare the
performance of the new method with the other above-mentioned
procedures (that is, with the best stress improvement procedures
currently available). It is important to note that we consider static,
dynamic and nonlinear solutions. Throughout the paper we use the
notation of Ref. [1].

2. Fundamental equations

Consider the equilibrium of a body of volume V and surface area
S, subjected to externally applied surface tractions f S on the area Sf

and body forces f B; see Fig. 1. The body is supported on the area Su

with prescribed displacements u p, and, for now, linear analysis
conditions are assumed. We seek to calculate the unknown dis-
placements, strains and stresses.

In the differential formulation of the problem, the unknown re-
sponse is calculated by solving the governing differential equations
of equilibrium and compatibility, with the constitutive relation-
ships, subject to the applied boundary conditions. That is, we solve

div ½sex� þ f B ¼ 0

eex ¼ @euex

sex ¼ C eex

subject to

uex ¼ up on Su

f S ¼ sexn on Sf

where uex, eex and sex are the exact displacements, strains and stres-
ses, respectively, @e is the differential operator on uex to obtain the
strain components eex, C is the stress–strain matrix, and n is the unit
outward normal vector on the surface Sf.

A second (but entirely equivalent) approach to the solution of
the problem is given by minimising the total potential energy P(u),

PðuÞ ¼
Z

V

1
2
eTs dV �

Z
Sf

uT f S dS�
Z

V
uT f B dV ð1Þ

with the constraints

e ¼ @eu

s ¼ C e

u ¼ up on Su

ð2Þ

where u is any displacement field satisfying the boundary condition
on Su, and e and s are the strains and stresses corresponding to u.

For approximate solutions, a larger class of trial functions can be
employed when we operate on the total potential energy rather
than on the differential formulation of the problem; see Refs.
[1,10]. This has important consequences and much of the success
of the finite element method hinges on this fact.

3. Finite element methods for stress predictions

In this section, we first review the displacement-based finite
element method, then we present a mixed formulation based on
the Hu-Washizu principle. Thereafter, we specialise this mixed for-
mulation to arrive at the basic equations of the PEM and the REP,
RCP, and NPF-based methods. Finally, we use this mixed formula-
tion – and its properties – to present our new stress prediction
scheme.

3.1. Displacement-based finite element method

In the displacement-based finite element method, we assume a
displacement pattern within each element m, that is, uðmÞ ¼ HðmÞ bU ,
where H(m) is the displacement interpolation matrix and bU lists the
nodal point displacements of the assemblage (including those at
the supports).

With this assumption, the strains e(m) and stresses sðmÞh of ele-
ment m follow directly from Eq. (2),

uS

fS

Sf
Bf

V

Fig. 1. General 3D body of volume V and surface area S, where Su [ Sf = S and
Su \ Sf = 0.
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