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a b s t r a c t

The asymptotic homogenization of periodic beam lattices is performed in an algorithmic format in the
present contribution, leading to a micropolar equivalent continuum. This study is restricted to lattices
endowed with a central symmetry, for which there is no coupling between stress and curvature. From
the proposed algorithms, a versatile simulation code has been developed, relying on an input file giving
the lattice topology and beam properties, and providing as an output the equivalent stiffness matrix of
the effective continuum. The homogenized moduli are found in close agreement with the moduli
obtained from finite element simulations performed over extended lattices. The obtained results are
exploited to design and calculate a lattice endowed with a hierarchical double scale microstructure, lead-
ing to a dominant micropolar effect under bending at the macroscopic scale.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Lattices endowed with a specific mechanical behavior due to
the presence of an inherent microstructure continue to attract
the interest of researchers [1]. The relationship between the mate-
rial microstructure and the resulting properties is the key to opti-
mization and design of lightweight, strong, and tough materials
and structures [2].

An important category consists of lattices having a discrete
kinematics and topology, leading to a micropolar effective behavior
at the macroscopic scale of description. Such effects have been pro-
ven to be important when specimen dimensions are comparable
with the cell size [3]. However, these effects are not easy to evi-
dence from a direct analysis at the macroscopic scale. The first
motivation of such micromechanically inspired analysis is an in-
creased understanding of the behavior of those lattices in certain
loading situations (concentrated forces, tolerance to damage, per-
forations) [4], certain geometries [5,6], or when submitted to heat
exchanges [7,8]. For example, contributions [9,10] show that the
variation of the stress concentration at the interface between bone
and prosthesis can be explained by the micropolar structure of the
medium. A second motivation of homogenization techniques is
their use as a tool to conceive and analyze novel structural materi-
als exhibiting unconventional mechanical properties or behaviors

[11,12]. A third motivation of deriving macroscopic models of
lattices at an intermediate scale is the reduction of the induced
computational cost.

The homogenization of lattices towards a micropolar contin-
uum has been an active research field since a long time [13], and
several methods have been developed for that purpose [14]: the
finite difference method [15], energy equivalence concepts, the
potential and kinetic energies of a typical cell of the lattice are
equated to those of the continuum, after expanding the nodal dis-
placements of the lattice in a Taylor series [16], averaging methods
[17,18], solving fundamental boundary-value problem using
symmetry of the repetitive microstructure [19,20], exploring the
response for various boundary conditions [21], using Korn-type
inequality [22].

One method that has been prolific is the double-scale asymp-
totic expansion; its principle goes back to the work of Sanchez–
Palencia [23]. This approach was applied to reticulated structures
by Cioranescu and Saint-Jean Paulin [24] and to other periodical
structures by Boutin [25]. Several variations were then developed
for the homogenization of beam lattices. Pradel and Sab [26,27]
suggested to treat homogenization of beam lattice in a way similar
to the homogenization of media made of discrete particles; the res-
olution of the unknowns is done by those authors by minimizing an
energy functional. In the work of Caillerie et al. [28,29], the authors
develop a method which uses only one variable in the asymptotic
expansions. The work of those authors is however limited to lattices
endowed mainly with an extensional behavior. Boutin et al. [30,31]
propose a dynamical formulation of the balance of forces to solve
vibration problems, applied essentially to square unit cells.
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All the previously mentioned asymptotic methods have
similarities. In a previous paper [32], we have shown the interest
of the variant introduced by Caillerie et al. [33] for the homoge-
nization of beam lattices with negative Poisson’s ratios towards
a classical continuum. In the present contribution, we extend this
approach for the automatic homogenization of beam lattices
having a complex unit cell towards a micropolar effective
medium. We shall restrict the forthcoming developments to
quasi static 2D situations, adopting a small deformations frame-
work in the elastic range. An essential objective of this work is
to develop a homogenization procedure in an algorithmic format
for general beam lattices, leading to an effective micropolar
behavior.

The paper is organized as follows: the discrete homogenization
technique will be exposed in Section 2. In Section 3, the developed
method is validated and an algorithm is proposed and applied to
the square and hexagonal lattices. Thereafter, as an illustration of
the powerfulness of the homogenization technique, a beam lattice
having a two-scales microstructure is conceived, exhibiting a
micropolar dominant effect at the macroscopic scale under bend-
ing. A summary of the main achievements and perspectives is gi-
ven in Section 4.

2. Homogenization of lattices and construction of effective
micropolar continua

In this section, we briefly recall the constitutive equations of
micropolar continua and discuss the choices made for the asymp-
totic developments of the kinematic variables.

2.1. The micropolar theory

In the theory of classical continua, the displacement is the sole
degree of freedom ui representative of translations, and the in-
duced small strain measure is then �ij ¼ 1

2 ðuj;i þ ui;jÞ. The idea of
couple stress was explored in the middle of the 19th century by
(MacCullagh (1839), Lord Kelvin (1882–1890), Voigt (1887)), and
was pursued later on by the Cosserat brothers [34], who proposed
a theory based on a rigid triad of vectors attached to each point of a
continuum, endowed with a local rotation considered as indepen-
dent from the local rotation due to the deformation. In the so-
called micropolar (or Cosserat) theory, two sets of degrees of
freedom are present, namely the displacement and the rotation
fields, defining the set of d.o.f. (u,/). The pioneering work of the

Nomenclature

B set of beams of an elementary cell
di shift factor for nodes belonging to a neighboring cell
Es elastic modulus of structural material
Eh homogenized elastic modulus
ek

i unit vectors of the curvilinear coordinate system associ-
ated to the lattice (generally non cartesian)

ei vector of the cartesian coordinate system
e = l/L small scale parameter
� deformation tensor
c micropolar modulus
g Jacobian of the transformation from dx to dk
H width of a microstructured beam
Ib second moment modulus of beam b
Ih second moment modulus of a microstructured beam
[k] matrix of the curvature of a beam in local coordinates
[K] stiffness matrix of the homogenized medium
[Kfl] stiffness matrix of the bending of a beam in local coor-

dinates
[Ktc] stiffness matrix of the extension of a beam in local coor-

dinates
[Kb] complete stiffness matrix (sum of [Kfl] and [Ktc]) of a

beam in local coordinates
Km

f bending stiffness of a microstructured beam
Ks

f bending stiffness of a homogeneous standard beam
j curvature tensor
j micropolar modulus
kl stiffness of a beam in extension
kf bending stiffness of a beam
L characteristic length of the whole structure
l characteristic length of the elementary cell
lb = eLb length of the beam b
ki curvilinear coordinates associated with the vectors ek

i
m couple stress tensor
Mn moment at node n
l classical Lamé shear modulus
li couple stress vectors
lm micropolar shear modulus
Nb = Nbeb normal forces of the beam b
N set of nodes of an elementary cell
mh homogenized Poisson’s ratio

/n angular displacement at node n
~/ ¼ 1

2 ð/
Ee þ /OeÞ mean angular rotation associated to the beam’s

node
/̂ ¼ ð/Ee � /OeÞ angular difference associated to beam’s node
/0 homogenized angular displacement of the equivalent

medium at zeroth order
r Cauchy stress tensor
tb width of the beam b
O, E the origin and end node of a beam respectively
P⁄ virtual power for one beam
R(k1,k2) continuum node position
Si stress vectors
[S] compliance matrix
Tb = TE = �TO resultant of forces at the nodes of a beam b
Tb

t ¼ Tb
t eb? shear forces of the beam b

Un = (un,vn) displacement vector at node n
Vn⁄ virtual translational velocity field
~v ¼ 1

2 ðvEe þ vOeÞ mean homogenized bending components asso-
ciated to the beam’s node

v̂ ¼ ðvEe � vOeÞ difference of homogenized bending components
associated to the beam’s node

vl beam’s local bending function, satisfying Bernoulli’s
assumptions

W length of a macroscopic beam
W�

i virtual work of internal forces
xn⁄ = xn⁄e3 virtual rotational velocity field at node n
xi coordinates associated with vectors ei

Z set of structural cells
Notations We have adopted specific notations exposed in the se-

quel. Several quantities are sometimes indexed by the
superscript e, which refers to the asymptotic expansion
of a variable (the same variable may also appear with-
out this superscript). For example, the displacement U
may appear either as Un, the standard displacement at
node n, or as the following expansion versus
e;Une ¼ U0 þ eUn

1 þ e2Un
2 þ . . . The lowest order term is

uniform within the unit cell, and is therefore not depen-
dent on the specific node n. In order to distinguish the
virtual quantities from other quantities, we will add
the superscript ⁄ for the former.

F. Dos Reis, J.F. Ganghoffer / Computers and Structures 112–113 (2012) 354–363 355



Download English Version:

https://daneshyari.com/en/article/511297

Download Persian Version:

https://daneshyari.com/article/511297

Daneshyari.com

https://daneshyari.com/en/article/511297
https://daneshyari.com/article/511297
https://daneshyari.com

