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Abstract

The dynamic stiffness matrix of a spinning composite beam is developed and then used to investigate its free vibration characteristics.
Of particular interest in this study is the inclusion of the bending—torsion coupling effect that arises from the ply orientation and stacking
sequence in laminated fibrous composites. The theory is particularly intended for thin-walled composite beams and does not include the
effects of shear deformation and rotatory inertia. Hamilton’s principle is used to derive the governing differential equations, which are
solved for harmonic oscillation. Exact expressions for the bending displacement, bending rotation, twist, bending moment, shear force
and torque at any cross-section of the beam, are also obtained in explicit analytical form. The dynamic stiffness matrix, which relates the
amplitudes of loads to those of responses at the end of the spinning beam in free vibration is then derived by imposing the boundary
conditions. This enables natural frequency calculation of a spinning composite beam at various spinning speeds to be made by applying
the Wittrick—Williams algorithm to the resulting dynamic stiffness matrix. The spinning speed at which the fundamental natural fre-
quency tends to zero is the critical speed, which is established for a composite shaft that has been taken from the literature as an example.

The results are discussed and some are compared with published ones. The paper concludes with some remarks.
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1. Introduction

Many authors have investigated the free vibration
behaviour of a spinning metallic beam (see Refs. [1-3]
which provide further references on the subject) whereas
that of a spinning composite beam made of laminated
fibrous composites is relatively a recent research topic [4—
9]. It is evident from the literature that the majority of pub-
lished papers on the free vibration analysis of spinning
metallic beams have used classical theory of differential
equations which couple flexural motions in both principal
planes, but ignores the torsional deformation. This is a rea-
sonable assumption for many metallic beams, particularly
with doubly symmetric cross-section for which the shear

) Corresponding author. Tel.: +44 20 704 08924; fax: +44 20 704 08566.
E-mail address: j.r.banerjee@city.ac.uk (J.R. Banerjee).

centre and centroid are coincident and as a consequence,
the torsional motion will be uncoupled with the flexural
ones. However, when dealing with the free vibration anal-
ysis of spinning composite beams, this assumption is not
generally true and the complexity of the problem increases
considerably, making the investigation more difficult. The
difficulty arises because unlike metallic beams, composite
beams, even with doubly symmetric cross-sections, exhibit
material coupling between various modes of deformation
caused by ply orientations. In particular, the coupling
between the bending displacements and torsional rotation
is of great significance in structural design.

The research in the area of spinning composite beams is
specially driven by helicopter and automobile industries to
develop lightweight drive shafts constructed from fibre-
reinforced composite materials. Bert [6] appears to be one
of the early investigators who presented a simple method
for critical speed analysis of composite drive shafts by

0045-7949/$ - see front matter © 2006 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

doi:10.1016/j.compstruc.2006.01.023


mailto:j.r.banerjee@city.ac.uk

J.R. Banerjee, H. Su | Computers and Structures 84 (2006) 1208—1214 1209

incorporating coupled bending-torsion composite beam
theory. Later Kim and Bert [7] used a more accurate shell
theory for the composite shaft and made a direct compar-
ison of results with those obtained earlier from the beam
theory [6]. Song et al. [8] on the other hand investigated
both vibration and stability behaviour of an elastically tai-
lored rotating shaft using beam theory. Their investigation
placed particular emphasis on the effects of conservative
and gyroscopic forces on the result. Song et al. [9] subse-
quently developed a more advanced anisotropic beam
theory to study both vibration and stability control of
smart composite rotating shafts by using structural tailor-
ing and piezoelectric strain actuation techniques. The
present paper however, uses a different approach and
develops the dynamic stiffness matrix of a spinning com-
posite beam by including the bending-torsion coupling
effect and then uses it to investigate its free vibration char-
acteristics. Following the authors’ recent work on the
dynamic stiffness formulation and free vibration analysis
for a spinning metallic beam [3], it is highly pertinent and
timely to extend their earlier theory to the important case
of composites.
The investigation is carried out in following steps.

1. The governing differential equations of motion of a spin-
ning composite beam in free vibration are derived using
Hamilton’s principle. The coupling effect between the
bending and torsional displacements is fully taken into
account when deriving the theory.

2. For harmonic oscillation, the governing differential
equations are solved in closed analytical form for bend-
ing displacements, bending rotations and twist.

3. Expressions for shear forces, bending moments and tor-
que are also obtained explicitly from the solutions of the
governing differential equations.

4. Next the shear forces, bending moments and torque are
related to the bending displacements, bending rotations
and twist by recasting the expressions for loads and
responses and linking them through the dynamic stiff-
ness matrix relationship.

5. The Wittrick—Williams algorithm [10] is then used as a
solution technique to compute the natural frequencies,
mode shapes and critical spinning speeds of an illustra-
tive example.

6. Numerical results are given and discussed and this is fol-
lowed by some concluding remarks.

2. Theory
2.1. Derivation of the governing differential equations

Fig. 1 shows a uniform circular spinning beam made of
laminated composites, in a right-handed rectangular Carte-
sian coordinate system. The beam has a length L, mass per
unit length m, polar mass moment of inertia per unit length
I,. The principal axes bending rigidities are EI for both
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Fig. 1. A spinning composite beam.

planes, the torsional rigidity is GJ, and K is the bending—
torsion coupling rigidity. Determination of EI, GJ and K
for a composite beam has been addressed in the literature
in numerous papers, for example see Refs. [11,12]. (For fur-
ther details on how the cross-sectional and other properties
of an anisotropic composite beam can be related through
the expressions for strains and material properties, the
works of Hodges et al. [13] and Giavotto et al. [14] are rec-
ommended.) The beam shown in Fig. 1 is spinning about
the Z-axis with a constant angular velocity Q in rad/s.

At a cross-section z from the origin, u and v are displace-
ments of a point P in the X and Y directions, respectively,
and the cross-section is allowed to rotate or twist about OZ
by ¢(y,1), so that the position vector r of the point P after
deformation is given by

r=(u—¢y)i+ (v+¢x)j (1)

where i and j are unit vectors in the X and Y directions,
respectively.
The velocity of the point P is thus given by

V=r+Qxr (2)

where Q = Qk, with k as the unit vector in the Z direction.
Substituting Eq. (1) into Eq. (2) and noting that k xi=
and k x j = —i, give
v={(i— dy) — Qv+ dx)Yi+ {(0 + dx) + Qu — dp)}i
3)

The kinetic energy 7 is given by

L
Tzlp///|v\2dxdydz:1p/ /v-vdAdz (4)
2 2 ) L
4

Substituting v from Eq. (3) into Eq. (4) and noting that
[,xdd = [,ydd=0,m=pAd and I, =p [,(x**+)*)d4, T
can be expressed as

L
T— Em/ i + i + 20Q(ub — i) + (P + %) dz
0

d3h [# 4 el 5)

The potential (or strain) energy U can be obtained using
the procedure outlined in Refs. [8,9] and is given by
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