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a b s t r a c t

Gorman’s Superposition method is known as one of the most efficient methods to solve the eigenvalue
problems of plates because of its excellent convergence rate. However, there are few published results
available that provide sufficient information on its boundedness. Here we have considered the nature
of convergence of the eigenvalues for rectangular plates with the following sets of boundary conditions,
completely free, fully clamped and cantilever. This paper shows numerically, the boundedness of the
Superposition method for undamped vibration problems of rectangular isotropic plates subjected to dif-
ferent boundary conditions. The Superposition method gives upper bound results for eigenvalues of
plates if the building blocks used in the Superposition method are subjected to stiffer boundary condi-
tions than those of the original system being modelled. In contrast, the Superposition method yields
lower bound results if the boundary conditions of building blocks are more flexible than those of the ori-
ginal system. The results would be useful to estimate the maximum possible error if the other bound can
be obtained by another method.

� 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Much research has been conducted into eigenvalue problems
such as plate vibration problems, using a wide range of methods.
For only specific conditions, exact closed form solutions are avail-
able, and otherwise the problems are solved approximately. It is
known that the Rayleigh–Ritz method always gives upper bounds
for the eigenvalues, which means that the actual eigenvalues
would be less than or equal to the obtained values. However, the
error due to discretisation cannot be calculated easily. Thus it is
useful to know when the Superposition method gives lower bound
results to the same problem, so that the cases for which the actual
eigenvalues could be delimited between these upper and lower
bounds will be known. We have considered combinations of differ-
ent boundary conditions to study this.

The Superposition method developed by Gorman has been suc-
cessfully applied for the analysis of undamped out-of-plane vibra-
tions of single isotropic plates [1]. Gorman’s Superposition method
solves a given plate problem by superimposing the steady state re-
sponse of plate subsystems subject to different boundary condi-
tions and driven along one edge by a distributed force, moment,
translation or rotation, which are referred to as building blocks
[1,2]. The method has also been applied to analyse more compli-
cated systems, such as orthotropic plates, plates with elastic

supports, point supported plates, triangular and parallelogram
plates, plates under in-plane forces, Mindlin plates and laminated
plates, as well as in-plane vibrations of plates [2–4]. The Superpo-
sition method was applied to not only plates but also open cylin-
drical shells [5]. Recently, this method was also shown to be
applicable for the determination of steady state response of plates
[6]. The Superposition method may be one of the most efficient
methods to solve the eigenvalue problems of plates because of
its excellent convergence rate [7–9]. However, there are few pub-
lished results available that provide sufficient information for the
boundedness of the Superposition method.

The interesting question whether the Superposition method
gives bounded results is raised by Ilanko [10]. He predicts that
whether it gives upper bound or lower bound results for the natu-
ral frequencies depends on the boundary conditions of the actual
plate and those of the building blocks used. In cases where the
building blocks used in the Superposition method is subject to stif-
fer boundary conditions than those of the original system being
modelled, it gives upper bound results. This would be the case
where completely free plates are modelled by using building
blocks with slip-shear boundary conditions. On the contrary, it
gives lower bound results when the building blocks are subject
to more flexible conditions at the boundaries. This would be the
case where fully clamped plates are modelled by using the building
blocks with simply supported boundary conditions.

The author has done a comprehensive free vibration analysis
using the Superposition method on the completely free plates
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and the fully clamped plates for various aspect ratios, and conver-
gence tests were carried out thoroughly for the first 12 modes [7].
The research is now extended to plates with combinations of free
and clamped edge conditions, for example cantilever plates. The
investigation shows, for the first time, that the boundedness of
the Superposition method, which is predicted in reference [10], is
numerically confirmed for undamped vibration of single isotropic
plates under various boundary conditions.

2. The Superposition method

2.1. The completely free plate

Free vibration analysis of plates using the Superposition method
is described in detail, in Refs. [1,2]. The essential steps in the der-
ivations are presented here for completeness.

Consider the motion of the rectangular plate with the dimen-
sions a and b as shown in Fig. 1. The partial differential equation
governing the out-of-plane vibration of rectangular plates is ex-
pressed in non-dimensional form using dimensionless coordinates
n and g, where n = x/a, g = y/b. The equation is written as

@4Wðn;gÞ
@g4 þ 2U2 @

4Wðn;gÞ
@g2@n2 þU4 @4Wðn;gÞ

@n4 � k4Wðn;gÞ
( )

¼ 0 ð1Þ

where k2 ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
, W: dimensionless plate lateral displace-

ment, U: the plate aspect ratio b/a, D: plate flexural rigidity (Eh3/
12)/(1 � m2), E: elastic modulus of the material, h: thickness of plate,
q: density of plate, and m: Poisson’s ratio.

In the Superposition method, the plate is considered [2] as con-
sisting of four building blocks that have exact solutions. Fig. 2
shows the building blocks used for the analysis of a completely free
plate. The two small adjacent circles depict slip-shear condition,
which is that there is no rotation normal to the edge and no verti-
cal edge reaction. The rotation, R, is applied on a driving edge of
each building block. The displacement of the original plate,
W(x,y), is expressed as the sum of the displacement of the sub-sys-
tems (Eq. (2)).

Wðn;gÞ ¼W1 þW2 þW3 þW4 ð2Þ

The displacements of the first building block is taken in the form of
a Lévy type solution,

W1ðn;gÞ ¼
Pk

m¼0;1...

YmðgÞ cos mpn ð3Þ

The edge rotation along the edge g = 1 is expressed as following
Fourier expansion

@W1ðn;gÞ
@g

¼
Pk

m¼0;1...

Em cos mpn ð4Þ

By enforcing the boundary condition of zero vertical edge reaction
and the equilibrium of edge rotation, the analytical function Ym(g)

is readily determined. The solutions for Ym(g) are expressed in
terms of the coefficients Em, in Ref. [2] as for k2 > (mp)2

YmðgÞ ¼ Emðhm11 cosh bmgþ hm12 cos cmgÞ ð5Þ

where

hm11 ¼ 1=fðbm � ZZ1cm=ZZ2Þ sinh bmg

and

hm12 ¼ ZZ1=fZZ2ðbm � ZZ1cm=ZZ2Þ sin cmg

in which

ZZ1 ¼ �bmfb2
m � ð2� mÞU2ðmpÞ2g

and

ZZ2 ¼ cmfc2
m þ ð2� mÞU2ðmpÞ2g

and, for k2 < (mp)2

YmðgÞ ¼ Emðhm21 cosh bmgþ hm22 cosh cmgÞ ð6Þ

where

hm21 ¼ 1=fðbm � ZZ3cm=ZZ4Þ sinh bmg

and

hm22 ¼ ZZ3=ZZ4fðbm þ ZZ3cm=ZZ4Þ sinh cmg

in which

ZZ3 ¼ �bmfb2
m � ð2� mÞU2ðmpÞ2g

and

ZZ4 ¼ cmfc2
m � ð2� mÞU2ðmpÞ2g

where

bm ¼ U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðmpÞ2

q
and

cm ¼ U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðmpÞ2

q
or cm ¼ U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmpÞ2 � k2

q
;

whichever is real.
The solution to the second building block can be easily gener-

ated from the first building block by interchanging the variables
g and n. The aspect ratio must replaced by the inverse of the aspect
ratio and k2 must be multiplied by U2. The subscript needs to be
changed from m to n. Once the solutions to the first and second
building blocks are obtained, solutions to the third and forth build-
ing blocks are determined by simply replacing g in the first build-
ing block solution to 1 � g, n in the second building block solution
to 1 � n, and changing subscripts to p and q respectively.

2.2. The fully clamped plate

The modes for fully clamped plates are obtained in a similar
manner to the procedure adopted for the completely free plates.
The building blocks in Fig. 2 are replaced by the plates whose all
edges are simply supported. Their driving edges are subjected to
bending moments instead of the edge rotation. The solutions of
the first building block utilised for the fully clamped plate are given
by the following equations [1]:

W1ðn;gÞ ¼
Pk

m¼1;2...

YmðgÞ sin mpn ð7Þ

for k2 > (mp)2

YmðgÞ ¼ Emðhm11 sinh bmgþ hm12 sin cmgÞ ð8Þ

b

a
x

y

Fig. 1. A rectangular plate.
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