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a b s t r a c t

A complex system can be modeled using various fidelities with the finite element method. A high-fidelity
model is expected to be more computationally expensive compared to a low-fidelity model and in gen-
eral may contain more degrees of freedom and more elements. This paper proposes a novel multi-fidelity
approach to solve boundary value problems using the finite element method. A Bayesian approach based
on Gaussian process emulators in conjunction with the domain decomposition method is developed.
Using this approach one can seamlessly assimilate a low-fidelity model with a more expensive high-fidel-
ity model. The idea is illustrated using elliptic boundary value problems.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The size of the finite element models has increased significantly
over the past decade. For example, in the automotive industry, 2 to
5 million degrees-of-freedom models are quite common nowa-
days. Such high-resolution models, combined with detailed phys-
ics can give good fidelity to experimental results. However, a
potential disadvantage is that such large models may be computa-
tionally expensive. One alternative to address this problem is to
use a low-resolution model. Although such low-resolution models
are often used during the design iteration, they are likely to be low-
fidelity and may miss some crucial physics. The motivation of this
paper is therefore to investigate the possibility of improving the
fidelity of a low-fidelity model without completely solving a de-
tailed high-fidelity problem.

A common tool when solving expensive finite element models
is the domain decomposition method [1–7], a divide-and-conquer
algorithm aimed at solving partial differential equations (PDEs). Its
main feature is that a linear system of discretised PDEs is recast as
a set of smaller linear systems to be solved separately. A finite ele-
ment model can thus be parallelized by partitioning the domain X
in a number of subdomains. This allows an increase in the resolu-
tion of the model, along with a reduction in CPU requirements.
There is, however, a potential disadvantage with this approach,

since in order to obtain the finite element solution for each subdo-
main, the governing PDEs must be solved in the interface of each
pair of subdomains. This paper presents a metamodeling approach,
known as Gaussian process emulation, in order to approximate the
solution to the interface problem. Broadly speaking, a Gaussian
process emulator works by treating a set of training runs as data,
which is in turn used to update some prior beliefs about the output
of an expensive simulator such as the interface problem. These be-
liefs are represented by a Gaussian stochastic process prior distri-
bution. As noted by some authors [8], the choice of a Gaussian
process is made for much the same reasons that the Gaussian dis-
tribution repeatedly appears in statistics: it is analytically tracta-
ble, flexible, and quite often realistic. After conditioning on the
training runs and updating the prior distribution, the mean of
the resulting posterior distribution approximates the output of
the simulator at any untried node in the input domain of the inter-
face problem, whereas it reproduces the known output at each in-
put belonging to the training runs. The idea of using a stochastic
process to solve domain decomposition problems has been em-
ployed in the past [9]. However, the implementation of Gaussian
process emulators is relatively simple and flexible. In addition to
this, Gaussian process emulators have already been implemented
in various scientific fields in order to alleviate the computational
burden of expensive simulators with encouraging results. These
fields include climate prediction [10,11], environmental science
[12], medicine [13–15], structural dynamics [16,17], reservoir fore-
casting [18], hydrogeology [19], quality control [20], heat transfer
[21], and reliability analysis [22], among others.

The paper is organized as follows. Section 2 introduces the
concepts of mutli-fidelity modeling in the context of finite
element method. A brief overview of domain decomposition and
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metamodeling is given in Section 3. Section 4 discusses the theory
behind the Gaussian process emulation. Section 5 explains the
proposed coupling between domain decomposition and Gaussian
process emulators. Section 6 presents some numerical results of
the proposed method applied to the deformation of a membrane
on a domain with different geometries. Section 7 offers some
conclusions based on the results obtained in the paper.

2. Multi-fidelity finite element modeling

Let X be a bounded domain in R2 with Lipschitz continuous
boundary @X, that is, there exist a finite number of covering open
sets O‘ such that, for every ‘; @X \ O‘ is the graph of a Lipschitz
continuous function and X \ O‘ lies on one side of this graph. Let
T h be a family of conforming meshes (triangles) which are
shape-regular as the mesh size h ? 0. Consider the elliptic PDE
with the following Dirichlet boundary condition

�r½aðxÞruðxÞ� þ bðxÞuðxÞ ¼ /ðxÞ; x 2 X

uðxÞ ¼ 0; x 2 @X ð1Þ

The Hilbert space L2(X) and Sobolev space Hk(X) are respectively
endowed with inner products ðu;vÞ ¼

R
X uðxÞvðxÞdx and ðu;vÞk ¼R

X uðxÞvðxÞdxþ
R

X
du
dx

� �
dv
dx

� �
dxþ � � � þ

R
X

dku
dxk

� �
dkv
dxk

� �
dx. The aim is to

obtain the function u : X! R which satisfies the conditions of prob-
lem (1) for a given / : X! R.

Applying the standard finite element method [23,24], the PDE in
problem (1) can be expressed in the matrix form as

Ku ¼ f ð2Þ

where K 2 RN�N is the stiffness matrix, u 2 RN is the displacement
vector and f 2 RN is the forcing vector. Note that N is the number
of degrees of freedom in the underlying finite element mesh.

Suppose Lf and Hf are two finite element models to solve prob-
lem (1). Let n

ðLf Þ
e and n

ðHf Þ
e denote the number of elements in the fi-

nite element meshes of Lf and Hf induced by Eq. (2) and let NðLf Þ and
NðHf Þ be the number of degrees of freedom. Let hðLf Þ and hðHf Þ be the
respective element size. Also, let u⁄(x) and U⁄(x) be a solution to Lf

and Hf respectively, and let u(r) be the exact solution to (1). That
way, ku(r)(x) � u⁄(x)k and ku(r)(x) � U⁄(x)k are the differences be-
tween the exact solution and the solution to the models Lf and
Hf, with k�k being the Euclidean norm. We call Lf a low-fidelity
model and Hf a high-fidelity model if the following inequalities
hold:

1. ku(r)(x) � u⁄(x)k > ku(r)(x) � U⁄(x)k (Accuracy)
2. hðLf Þ > hðHf Þ (Resolution)
3. NðLf Þ < NðHf Þ (number of degrees of freedom)
4. n

ðLf Þ
e < n

ðHf Þ
e (number of elements)

It is important to note that the concepts of low and high fidelity
based on the above definition are relative. A single refinement of a
given low-fidelity mesh would imply a different increase in the
fidelity of the model depending on the particular characteristics
of the problem at hand. A more accurate description of Lf and Hf

would therefore be ‘‘lower’’ and ‘‘higher’’ fidelity models respec-
tively. Keeping this note in mind, the current low and high fidelity
terminology is kept in the remainder of the paper. Also, note that in
the above definition it is implicitly assumed that both models Lf

and Hf have same polynomial order p. A general hp finite element
model is beyond the scope of this paper (see for example [25]).
Fig. 1 shows two finite element models on a D-shaped domain,
each with a different fidelity level.

3. A brief overview of domain decomposition and
metamodeling

3.1. The domain decomposition method

Let X be partitioned in S subdomains {Xj:1 6 j 6 S}, such that
X ¼

S
jXj. Suppose these domains are non-overlapping, that is

Xj
T

Xk = ;, "j – k. The interface is denoted by C, where

C ¼
[
i;j

ð@Xi \ @XjÞ n @X ð3Þ

In Fig. 2, the D-shaped domain X from Fig. 1 is partitioned into sub-
domains X1 and X2. The interface C separates both subdomains.
Fig. 3 shows the finite element mesh of the partitioned low-fidelity
model Lf and the partitioned high-fidelity model Hf. In order to ob-
tain the solution to these finite element models, it can be shown [1]
that if X is the disjoint union of the subdomains X1, . . . ,XS, then the
discretised PDEs governing the system’s response can be recast as
the following partitioned linear system

K1 0 � � � 0 BT
1

0 K2 � � � 0 BT
2

..

. ..
. . .

. ..
. ..

.

0 0 � � � Kn BT
S

B1 B2 � � � BS C

0
BBBBBBB@

1
CCCCCCCA

u1

u2

..

.

un

uc

0
BBBBBBB@

1
CCCCCCCA
¼

f1

f2

..

.

fS

fc

0
BBBBBBB@

1
CCCCCCCA

ð4Þ

The solution of the partitioned linear system (4) is obtained by solv-
ing the interface problem

C � B1K�1
1 B

T
1 � � � � � BSK

�1
S B

T
S

� �
uc

¼ fc � B1K�1
1 f1 � � � � � BSK�1

S fS ð5Þ

and then solving in parallel

u1 ¼ K�1
1 f1 � BT

1uc
� �

..

.

uS ¼ K�1
S fS � BT

S uc
� �

ð6Þ

Fig. 4 shows the domain decomposition solution of problem (1) for
Hf and for the values a(x) = 1, b(x) = 0, and / = 1. The model repre-
sents the deformation of a membrane in the domain X.

The main problem with solving a finite element model using
domain decomposition is that the Schur complement matrix

R ¼ C � B1K�1
1 B

T
1 � � � � � BSK

�1
S B

T
S ð7Þ

is numerically expensive to obtain. Hence, solving the linear system
(5) is likely to become a bottleneck of the domain decomposition strat-
egy for a high-fidelity model Hf. A metamodeling approach is therefore
proposed, whereby the solution to the interface problem (5) is approx-
imated using only a few evaluations of a lower-fidelity model Lf.

3.2. Metamodeling approach

Let u�ðxÞ : X � R2 ! R be a finite element solution to problem
(1). If x = (x,y) and u⁄(x) = z, then u⁄ is a function that maps
(x,y) ´ z. Adopting this notation, a level set of the domain X with
respect to the x-axis is defined as

LxðcÞ ¼ fzju�ðc; yÞ ¼ z; c 2 Rg ð8Þ

and analogously for a level set with respect to the y-axis

LyðdÞ ¼ fzju�ðx; dÞ ¼ z; d 2 Rg ð9Þ

For nx;ny 2 Zþ, let K denote

K ¼ fLxðciÞ;LyðdjÞj1 6 i 6 nx;1 6 j 6 nyg ð10Þ
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