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a b s t r a c t

A method of damage localization is introduced which relies on continuous wavelet transformation of the
structure’s forced dynamic response. Continuous wavelet transforms represent the shape attributes of
time series and enhance their delineation in the time-scale domain. As such, they allow identification
of localized shape changes of dynamic responses for signal change detection. This change detection
capacity enables identifying the damage-affected responses as well as formulating the characteristic
effects of individual damaged components on the modeled dynamic response. The results obtained from
simulated acceleration of a nine-storey building are 90% and 100% accurate with the steady-state and
transient accelerations, respectively.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to detect damage in civil structures is vital to the
safety and livelihood of the society and its economy. Although
nondestructive methods based on visual inspection, acoustics, ultra-
sound, magnetic field, radiography, thermal field and strain-gauges
are reasonably effective for detection of near-surface damage, they
are impractical for inaccessible components [1]. As an alternative,
changes to the modal properties of the structure consisting of reso-
nant frequencies, mode shapes and damping ratios have been used
[2]. The modal properties are usually obtained from the ambient
or forced dynamic response of the structure, as depicted by acceler-
ation or force measurements at different locations. The basic pre-
mise is that damage affects the physical properties (i.e., mass,
damping, and/or stiffness) of the structure, therefore, it should be
evident from its dynamic response.

Damage identification methods are categorized as inverse and di-
rect [3–5]. Inverse methods update the structural model to duplicate
the measured response. They then use this updated model to esti-
mate the physical properties affected by the damage (e.g., reduction
of stiffness due to onset of cracks or loosening of a connection) [2].
Inverse methods are generally model-based and computationally
demanding. Direct methods, in contrast, estimate the structure’s
modal properties from the measured response to determine the
changes caused by the damage [6]. Even though direct methods
are more straightforward than inverse methods they are hampered

by the limitations associated with high-frequency modal property
estimation. Limitations stem from the high energies required for
high-frequency forced excitation of the structure and the numerical
errors associate with high-frequency modal property estimates. This
paper introduces a direct method that is independent from modal
properties, thus, avoids the limitations associated with their
estimation.

Considering the four levels of damage identification [3]: detec-
tion, localization, quantification, and prognosis, direct methods are
usually effective in damage detection from changes to the modal
properties [7–15] but they are challenged in damage localization.
To localize the damage, direct methods need to associate the de-
tected modal changes with the characteristic pattern of influence
by individual damaged components. This is generally performed
through pattern classification [16,17] and is contingent upon the
availability of distinct characteristic influences by the damaged
components. Although considerable effort has been devoted to
finding modal properties or features of the response time history
that would ensure such distinction [18,19], the modal properties
or features that are established are often case-specific and limited
in scope. The method introduced in this paper relies solely on the
dynamic response time-history, so it obviates feature extraction
and makes it broadly applicable to various structures.

The salient feature of the proposed method, that makes it inde-
pendent of modal analysis or feature extraction, is its effective
signal change detection capacity. This capacity which enables the
method to focus directly on the dynamic response time history
of the structure is provided by continuous wavelet transforms
(CWTs). There are two aspects of CWTs that are essential to the
method’s workings: (1) their representation of various shape
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attributes of dynamic responses, and (2) their delineation of the
dynamic responses in the time-scale domain. The representation
of shape attributes allows shape comparison of the dynamic re-
sponses. Their enhanced delineation allows localization of regions
of considerable deviation between them in the time-scale domain.
These regions of deviation, which are called signatures, have been
shown to offer unique advantages in various system identification
areas, such as model validation, parameter estimation, and mea-
surement selection [20–23]. This paper extends these results to
damage localization of civil structures, through the proposed
‘‘damage signature isolation method (DSIM).’’ It should be noted
here that wavelet transforms have been extensively used in fault
diagnostic applications, as referenced in [24] and discussed in
[25]. However, in all these applications wavelet transforms have
been utilized to extract features of the sensory signals – no appli-
cation, so far as we know, offers a succinct way of contrasting the
signals, as provided by the signatures in DSIM.

The basis for defining the characteristic responses of the dam-
aged components in DSIM is the sensitivity of the structure’s mod-
eled response to component stiffness values. The underlying
assumption is that damage of an individual component is reflected
in the corresponding component stiffness, as is also assumed in the
indirect approach. Therefore, the sensitivity of the structure’s dy-
namic response to a component stiffness coefficient should provide
a blueprint of the characteristic influence of the corresponding
component damage. Here, again, sensitivity analysis has been used
extensively for damage localization; for example, sensitivity of
structural parameters to specific component parameters have been
used for damage localization through frequency response functions
[26], or the sensitivities of the orthogonality conditions of mode
shapes have been considered from damaged and undamaged struc-
tures for damage localization [27]. The distinction of DSIM is that
by relying on its signal change detection capacity, it can directly
use the sensitivities of dynamic response time histories to compo-
nent stiffness coefficients and does not require any computation
associated with frequency response functions or modal properties.

2. Transformation to the time-scale domain

DSIM uses CWTs to represent and enhance various shape attri-
butes of dynamic responses in order to identify the responses that
are different in shape. It uses these features to also define the influ-
ence matrix that associates these responses with the damaged
component. The features of CWTs that are essential to DSIM are de-
scribed below.

A wavelet transform (WT) is obtained by the convolution of a
wavelet function ws(t) with the signal f(t) [28], as

Wffgðt; sÞ ¼ f � wsðtÞ ¼
Z 1

�1
f ðsÞwsðt � sÞds ð1Þ

where wsðtÞ ¼ 1
s w t

s

� �
represents the wavelet function, and t and s de-

note the translation (time) and dilation (scale) parameters, respec-
tively. The wavelet function can be manipulated in two ways, as
shown in Fig. 1: (i) it can be moved sideways (translated) to coin-
cide with different segments of the signal, and (ii) it can be widened
(dilated) or narrowed (constricted) to align with a larger or smaller
segment of the signal at its current location (current time). Dilation
in wavelet transforms is analogous to widening or narrowing of the
sinusoidal function in Fourier transform according to the frequency.
As such, scale, s, in WT is often paralleled to frequency, hence the
name ‘‘time–frequency’’ domain.

Numerically, the computation of WTs is significantly facilitated
for dyadic time data. We have used 128 data points of each time
series for this study and have chosen to obtain the WTs for 72

scales. This results in a time-scale plane of 128 � 72 pixels, where
each pixel has unity time and scale dimensions.

2.1. Characterization of shape attributes

Representation of shape attributes of time signals by CWTs
stems from their multiscale differential feature [28]. Consider
w(t) to be the nth order derivative of the smoothing function
b(t); i.e.,

wðtÞ ¼ ð�1Þn dnðbðtÞÞ
dtn ð2Þ

then this wavelet transform is a multiscale differential operator of
the smoothed function f ⁄ bs(t) in the time-scale domain [29]; i.e.,

Wffgðt; sÞ ¼ sn dn

dtn ðf � bsðtÞÞ ð3Þ

Using this feature, one can utilize the CWT to represent the first
derivative of a time signal to represent its slope, or its second deriv-
ative to represent the rate of slope change. For instance, one may
consider the smoothing function b(t) to be the Gaussian function.
In this case, the Gauss wavelet is the first derivative of the Gaussian
function, as shown in the left plot of Fig. 2. This results in a wavelet
transform that is the first derivative of the signal f(t) smoothed by
the Gaussian function, and orthogonal to it. Similarly, the Sombrero
wavelet is the second derivative of the Gaussian function, as shown
in the right plot of Fig. 2, and produces a wavelet transform that is
the second derivative of this smoothed signal in the time-scale do-
main. The first derivative of a signal is representative of its slope
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Fig. 1. Translation and dilation of the Sombrero wavelet across a time signal.
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Fig. 2. Gauss wavelet (left) and Sombrero wavelet (right) which are the first and
second derivatives of the Gaussian function, respectively.
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