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Abstract

The failure of a structural system is usually governed by multiple failure criteria, all of which are to be taken into consideration for
reliability estimation. If all the uncertain parameters are defined as random variables, then the system reliability can be estimated accu-
rately by using existing techniques. However, when modeling variables with limited information as intervals with upper and lower
bounds, the entire range of these bounds should be explored while estimating the system reliability. The computational cost involved
in estimating reliability bounds increases tremendously because a single reliability analysis, which is a computationally expensive proce-
dure, is needed for each configuration of the interval variables. To reduce the computational cost involved, high quality function approx-
imations for individual failure functions and the joint failure surface are considered in this paper. The accuracy and efficiency of the
proposed technique are demonstrated with numerical examples.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: System reliability; Random variables; Uncertain intervals; Fast Fourier transforms; Convolution integral; Reliability bounds

1. Introduction

Uncertainties present in the design process need to be
quantified and propagated to assess the safety of the design.
Based on the information available, these uncertainties
might be quantified as random or nonrandom variables.
If sufficiently large amount of data about a particular vari-
able is available, then its variation can be approximated by
using a probability distribution. This random uncertainty
can be propagated using existing probabilistic methods.
But if the information about a particular variable is limited
to a lower and upper bound, then its variation cannot be
approximated using a probability distribution. The entire
intervals are to be analyzed in estimating the response
bounds. But in most problems, information might be avail-
able to represent some variables with a probability distribu-

tion while information about some variables might be
sparse. Therefore, this paper focuses on problems with mul-
tiple failure criteria for which some uncertainties can only
be quantified as intervals while some are random in nature.

A structure consists of many individual components, all
of which have the potential to fail. Reliability analysis of
structural systems involves evaluating this potential to fail-
ure, for various performance criteria or limit-states from
different disciplines that might be correlated. Moreover,
when dealing with systems where the uncertain parameters
are modeled using both random and interval variables,
every configuration of the interval variables is to be
explored to determine the bounds on the reliability. There-
fore, computational effort involved in estimating the failure
probability increases tremendously in the presence of mul-
tiple limit-states and mixed uncertain variables. In the case
of systems with infinite limit-state functions, only the limit-
state functions which place an active role in the reliability
estimation can be considered for determining the system
reliability. These limit-states can be obtained by consider-
ing the active constraints in the initial design process.
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When dealing with only random variables, the failure
probability of a structural system is obtained by solving
the multi-dimensional integral

pf ¼
Z

X
fX ðXÞdX ð1Þ

where pf is the probability of failure, fX(X) denotes the joint
probability density function of the vector for the basic ran-
dom variables, X and X is the joint failure region modeled
by all of the limit-state functions. This multifold integral
has to be solved multiple times to estimate the bounds on
system reliability. In theory, the probability density func-
tion of a random variable which is a linear summation of
independent random quantities can be obtained by convo-
luting the individual density functions [1]. Therefore, when
the failure surface is expressed as a linear combination of
random variables, Eq. (1) can be transformed into a convo-
lution integral and evaluated by the use of fast Fourier
transforms.

Monte Carlo simulation can be used to estimate the
probability of failure numerically. However, this simulation
involves tremendous computational cost due to the large
number of exact function evaluations that are required,
which come from computationally expensive finite element
analysis (FEA) or computational fluid dynamics (CFD)
simulations. Even if the cost is not a constraint, the error
associated with randomly sampling design points for the
simulation leads to inaccuracy in the results. This is because
the random numbers generated using pseudo random num-
ber generators tend to form clusters and are not uniformly
distributed over the entire design space [2]. Moreover, the
accuracy of the estimated failure probability is also depen-
dent on the number of samples and seed number used in
the Monte Carlo simulation. For aerospace applications
where the probability of the entire system is expected to
be 10�7, the structural subsystem failure probability will
be of the order of 10�10, requiring at least 1011 samples to
perform crude Monte Carlo simulation. For a case where
100 evaluations of an approximate limit-state can be per-
formed in 1 s, we would need 109 s to run Monte Carlo
which would require about 31.7 years. Therefore, there is
a clear need to develop probability integration schemes that
are applicable for these classes of problems.

To reduce the computational cost involved, researchers
[3–5] have explored the use of surrogate representations
of the failure surface to compute the failure probability.
Most of these methods were developed for handling system
models with only random variables. While algorithms that
deal with mixed variable problems [6,7] exist, they do not
have any provision for handling multiple limit-state func-
tions. Therefore, methods need to be developed for systems
that are modeled using mixed variables and have multiple
failure criteria.

The use of fast Fourier transforms (FFT) for solving the
convolution integral has been explored previously [8,9]
using surrogate models for representing the failure surface.
This surrogate model has to be a separable function that

can be linearized in order to be able to apply the method.
This approach has been applied for various problems to
determine the failure probability of single limit-state func-
tion. However, when dealing with multiple limit-states, the
failure surface to be approximated is often highly nonlinear
as it is comprised of the intersection of all the failure
modes. For this highly nonlinear surface, a single approx-
imation will not be sufficiently accurate. Therefore, in this
paper, a methodology [10] is used that evaluates the convo-
lution integral based on several approximations, each of
which is accurate in a certain region of the entire design
space. This methodology is discussed in the next section
using a numerical example with two random variables
and extended to multiple random variables.

When all the variables are defined as intervals, then
interval analysis techniques can be used to estimate the
lower and upper bounds on the response. Interval arithme-
tic provides an exact bound if all the variables occur only
once in the function. This problem of dependency [11] esti-
mates a wider bound for the response if a variable occurs
more than once. Interval uncertainties can also be propa-
gated through the structure by including them in the finite
element formulation [12]. A static structural problem can
be expressed in the form of a system of linear interval equa-
tions which are solved to obtain the bounds on the struc-
tural response. In the presence of closed-form expressions
for the limit-state functions, the interval variables can be
transformed so that each variable appears only once in
the expression thereby providing an exact estimate of the
bounds. But when dealing with implicit limit-state func-
tions, this technique is not feasible due to the absence of
a closed-form relation between the response and the inter-
val variables. So when dealing with implicit limit-state
functions, the entire intervals are to be explored to obtain
the configurations that result in the bounds of the response.

In the presence of both random and interval vari-
ables, every combination of the interval variables has an
unknown probability. Therefore, when determining the
bounds on reliability, the entire bounds of the interval vari-
ables are to be explored. Moreover, the joint failure surface
changes based on the configuration of the interval vari-
ables. One approach for dealing with interval variables is
to assume a uniform distribution for the variables. By
doing this, additional information is added about these
variables resulting in an inaccurate estimate of the reliabil-
ity. Therefore, interval uncertainty has to be handled by
analyzing the whole interval to estimate the bounds. In this
paper, a methodology is presented for estimating the sys-
tem reliability bounds for problems where some of the
uncertain parameters are random in nature and some are
defined as intervals. To facilitate the exploration of the
intervals and modeling of a new joint failure surface for
every combination of the interval variables, the implicit
limit-state functions are modeled using high quality
approximations. Once the joint failure surface is modeled,
fast Fourier transforms are used to solve the convolution
integral accurately.
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