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A B S T R A C T

Systematic conservation initiatives attempt to cater to the needs of many species via the integration of multiple
species distribution models (SDMs), or via the integration of Systematic Conservation Planning (SCP) software,
such as Zonation. Unfortunately, due to limited data and knowledge, it is often difficult to select the most
suitable model for specific species, let alone an appropriate ensemble modeling method for multiple species. In
general, model selection criteria are based on either model performance or consensus. The former integrates the
highest-performing SDM for all focal species, whereas the latter integrates multiple SDM outputs based on
consensus. While higher-performing ensemble models presumably identify high-quality habitats better, many
have argued that high consensus ensemble models have less uncertainty originating from sporadic model
variability. This study develops and validates seven ensemble-modeling strategies for integrating outputs of the
systematic conservation tool Zonation. First, we considered the distributions of 11 bird species via 100 runs of
five SDMs across Taiwan. Second, we evaluated the local and global uncertainty of all five models. Third, we
used Zonation to obtain conservation priorities. We then used Principal Component Analysis (PCA) to quantify
different sources of uncertainty. Finally, we used independent third-party habitat data to validate each strategy.
On average, the ‘best model’ strategy (based on the highest AUC value) performed best. Based on our modeling
exercise we present a comprehensive framework for conservation prioritization, validation and the quantifica-
tion of uncertainty intrinsic to SDMs according to different conservation scenarios and goals.

1. Introduction

Species distribution models (SDMs) are widely used to support
conservation decision-making (Guisan et al., 2013; Guillera-Arroita
et al., 2015). Researchers and decision makers have used various types
of SDMs along with systematic conservation planning (SCP) (Buisson,
Thuiller, Casajus, Lek, & Grenouillet, 2010) software packages to assess
or delimit conservation areas (Guisan et al., 2013). SDM outputs gen-
erally represent the probability of species presence (Liu, Berry,
Dawson, & Pearson, 2005), and/or environmental suitability (Guisan
et al., 2013; Robertson, Peter, Villet, & Ripley, 2003). The primary ob-
jective of SCP is to prioritize areas that maximize biodiversity. To ac-
complish this, most initiatives reference the outputs of SDMs (Guisan
et al., 2013; Moilanen, Wintle, Elith, & Burgman, 2006). Since all SDMs

suffer from uncertainty, e.g. the overestimation of species distributions
(Beale & Lennon, 2012), conservation initiatives should include un-
certainty analysis (Diniz-Filho et al., 2009; Guisan et al., 2013;
Lentini &Wintle, 2015; Meller et al., 2014; Moilanen, Runge et al.,
2006; Moilanen, Wintle et al., 2006; Watling et al., 2015). There are
currently a number of studies which attempt to examine the effects of
uncertainty and performance within and between SDMs on conserva-
tion area selection (Carvalho, Brito, Crespo,Watts, & Possingham, 2011;
Gallo & Goodchild, 2012; Guisan et al., 2013; Hermoso & Kennard,
2012; Langford, Gordon, & Bastin, 2009; Lentini &Wintle, 2015; Meller
et al., 2014; Moilanen, Wintle et al., 2006; Rocchini et al., 2011;
Watling et al., 2015). Given the spatial variability of SDM outputs and
the central role they play in conservation planning, it is essential to
continue examining both the sources of SDM uncertainty and the effects
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they have on conservation area selection (Watling et al., 2015).
When discussing uncertainty, SDM structure is of utmost im-

portance since it determines both how real world phenomena are
simplified and the complexity of input data (Diniz-Filho et al., 2009;
Huang, Lin, & Chiang, 2014; Moilanen, Wintle et al., 2006; Watling
et al., 2015). Dormann, Purschke, Márquez, Lautenbach, and Schröder
(2008) classified SDMs into three groups: i) “traditional” methods, e.g.
Generalized Linear Models (GLM), ii) “machine-learning” methods, e.g.
Support Vector Machines (SVM) and random forest (RF), and iii)
“presence-only” techniques, e.g. maximum entropy. Since different
SDM methods are more realistic for different species
(Segurado & Araújo, 2004), with different data, and or under different
requirements, there is no consensus on an optimal SDM for all situa-
tions. Furthermore, due to limitations e.g. logistical, financial
(MacKenzie, 2005), it is often exceedingly difficult or impractical to
identify an optimal SDM for all focal species considered in a specific
conservation initiative. Therefore, the integration of model outputs via
modeling, and subsequent uncertainty analysis has attracted attention
in conservation area selection (Meller et al., 2014).

Ensemble modeling is attractive since it allows for the simultaneous
consideration of multiple species, model types, and sampling regimes
when undertaking modeling initiatives. Additionally, researchers may
be able to identify optimal model types and sampling regimes, i.e. sets
of samples, by comparing output performances. Conversely, and pos-
sibly more importantly, researchers can perform uncertainty analysis,
thereby identifying and quantifying the sources of uncertainty.
Although uncertainty is inherent to most, if not all, conservation deci-
sions (Guisan et al., 2013) the use and analysis of ensemble models can
quantify uncertainty and should lessen its effects.

Here, we develop a five-step conservation area selection procedure,
capable of considering numerous species and able to evaluate the un-
certainty and performance of multiple SDM types, sampling regimes,
conservation area sizes and conservation area selection strategies (see
workflow chart in Fig. 1). Our five-step procedure consists of (1) mul-
tiple runs of two traditional SDM methods, two machine-learning and
one presence-only method for each species considered. Although all
raw SDM outputs represent the probability of species presence or the
relative scores, which indirectly represent the habitat suitability, for
simplicity we consider species use directly proportional to habitat
suitability; therefore we use the two terms interchangeably throughout
this paper and define all SDM output values as Habitat Suitability In-
dices (HSI). (2) After comparing model AUC, true skill statistics (TSS)
values (Allouche, Tsoar, & Kadmon, 2006) and levels of global un-
certainty, we (3) use the software Zonation to create a hierarchy of
conservation priorities for each SDM output. (4) We then use a principal
component analysis (PCA) and Spearman rank correlation to assess the
consistency among the conservation priority hierarchies. In the fifth
step, we evaluate the effectiveness of seven conservation area selection
strategies under varying conservation scenarios (percentage of land
designated to conservation) with independent third-party data. Here,
we applied our approach to data from Taiwan and show its ability to
deal with SDM uncertainty. Following and developing the “post-selec-
tion” method, as presented in Meller et al. (2014), each conservation
area selection strategy represents a different Zonation ensemble mod-
eling technique. In addition, we compared the performance of each
selection strategy, in terms of habitat coverage, with a null model. A
large number of randomly generated conservation areas represented
the null model.

2. Materials and methods

2.1. Environment data

Taiwan is a mountainous country located off the eastern coast of
China (Fig. 2). The Tropic of Cancer bisects the country and divides it
into two climatic zones, the tropical monsoon in the south and the sub-

tropical monsoon in the north. Approximately 60% of the island is
covered by mountains, with over 200 summits exceeding 3000 m a.s.l.
The complex geology and landscape has led to highly diverse vegeta-
tion. Here, we used 803 2 km× 2 km resolution presence/absence
samples of 11 protected bird species to project species across Taiwan
(Fig. 2(a)): Erithacus johnstoniae, Regulus goodfellowi, Parus ater-
aegithalosconcinnus, Actinodura morrisoniana, Brachypteryx montana,
Liocichlasteeri garrulusglanderius, Parusmonticolus heterophasiaauricularis,
Pericrocotussolaris niltavavivida, Arborophila crudigularis, Ficedula hyper-
ythra and Myomela leucura (Appendix Table S1).

We considered the following environmental variables in our species
distribution models: elevation, temperature, precipitation, Normalized
Difference Vegetation Index (NDVI), relative humidity, distance to
major roads of national and provincial levels, sea or river (see Appendix
Table S3 for more information) all at a resolutions of 2 km × 2 km. We
used data from Lee, Ding, Hsu, and Geng (2004) for modeling. Finally,
we used the 2013 data of Taiwan Breeding Bird Survey (BBS Taiwan) as
independent data to validate our conservation selection strategies. BBS
Taiwan, organized by Taiwan Endemic Species Research Institute, is a
citizen science project, in which volunteers survey bird community
composition in more than 300 sampling sites across Taiwan since 2009
(http://bbstaiwan.tw). The BBS Taiwan data were collected using
consistent sampling methods and effort within the 2 km × 2 km sam-
pling sites and are therefore suitable for independent validation.

2.2. Species distribution modeling and evaluation

Five species distribution models (GLM logistic, Random forest – RF,
GAM; Support Vector Machine (SVM); maximum entropy) estimated
the probability of species presence, i.e. HSI, for each planning unit. All
models were implemented using our own code and different packages
of the R software, including random Forest (Liaw&Wiener, 2002), M,
gam (Hastie & Hastie, 2013), SDM Tools (VanDerWal, Falconi,
Januchowski, Shoo, & Storlie, 2014) and e1071 (Meyer, Dimitriadou,
Hornik, Weingessel, & Leisch, 2012). In GLM, we only included linear
terms of environmental variable and a binomial link function. In RF, we
used the default number of 500 trees. For GAM, we applied the default
smooth terms, thin plate regression spline, for environmental variables.
In SVM, we used the default setting of each parameter including radial
basis kernel function, degree of 3 for the polynomial in kernel function,
constraints violation cost of 1. The settings in maximum entropy were:
convergence threshold = 10−5, maximum iterations = 1000, regular-
ization value β = 10−4, with the use of linear features. The data for the
11 species were randomly divided into a training set, consisting of 80%
of the data, and a 20% model validation set (Ko, Schmitz, Barbet-
Massin, & Jetz, 2014; Parida, Hoffmann, & Hill, 2015; Strubbe, Jackson,
Groombridge, &Matthysen, 2015). We chose an 80% training sample
split in order to maximize the representativeness of each species. We
repeated this split-sample procedure 100 times per SDM approach,
creating 500 different outputs for each species. We verified the ade-
quacy of using no more than 100 outputs for each model by running the
same procedure but with double the outputs, i.e. 200 times per SDM for
a total of 1000 outputs, which yielded nearly identical results (see
Appendix Tables S4 and S5 in Supplementary material).

We evaluated the SDM performance for each species via the average
of three different indices, AUC, Kappa, and TSS values (see Appendix A
in Supplementary material). A multivariate analysis of variance
(MANOVA) was applied to evaluate the difference of model perfor-
mances between 5 SDMs in terms of the AUC values of the eleven
species (Michel & Knouft, 2012). In order to confirm the pairwise dif-
ference between any two model performances, the post-hoc test of
MANOVA was conducted via Hoteling’s t-test. Hoteling’s t-test is a
multivariate analogue and a generalization of the univariate t-test that
is designed to evaluate the differences between means of different
distributions (Turner, Collyer, & Krabbenhoft, 2010). Due to the non-
normality of AUC, Kappa and TSS distributions, we used a permutation
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