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A B S T R A C T

Traditional tools to map the distribution of urban green space have been hindered by either high cost and labour
inputs or poor spatial resolution given the complex spatial structure of urban landscapes. What’s more, those
tools do not observe the urban landscape from a perspective in which citizens experience a city. We test a novel
application of computer vision to quantify urban tree cover at the street-level. We do so by utilizing the open-
source image data of city streetscapes that is now abundant (Google Street View). We show that a multi-step
computer vision algorithm segments and quantifies the percent of tree cover in streetscape images to a high
degree of precision. By then modelling the relationship between neighbouring images along city street segments,
we are able to extend this image representation and estimate the amount of perceived tree cover in city
streetscapes to a relatively high level of accuracy for an entire city. Though not a replacement for high resolution
remote sensing (e.g., aerial LiDAR) or intensive field surveys, the method provides a new multi-feature metric of
urban tree cover that quantifies tree presence and distribution from the same viewpoint in which citizens
experience and see the urban landscape.

1. Introduction

With the growing consensus that nature and multi-functional
ecosystems are intrinsic to sustainable cities, decision makers, designers
and the broader public alike are looking to trees as urban keystone flora
that provide natural infrastructure and services − to reduce air
pollution, support biodiversity, mitigate heat island effects, increase
land value, improve aesthetics and even improve human health (Kardan
et al., 2015; Lothian, 1999; Lovasi et al., 2008; McPherson et al., 1997;
Nowak, Hirabayashi, Bodine, & Greenfield, 2014; Thayer and Atwood,
1978). Urban tree effects may even extend to cultural and psychological
behaviours with, for example, a high abundance of street trees being
linked to urban scenes that were perceived to be safe (Naik, Philipoom,
Raskar, & Hidalgo, 2014). The fact remains however that urban trees
come with costs and are currently threatened by climate change, pests
and diseases. Conflicting land uses and cost-benefit tradeoffs cause
contention at many levels of society. Such contentions can be alleviated
through a better understanding of the role of trees in the complex and
cluttered landscapes that are cities. To this end, tools to quantify and

monitor presence, abundance and health of urban trees are needed.
Governments, particularly cash-strapped ones, are evermore looking for
low-cost ways to establish baseline data, manage and engage the public
on urban trees.

Traditionally, urban tree cover has been quantified using coarse-
scale methods developed for naturally forested landscapes and exposure
to “nature” as an urban quality indicator has been quantified by
measuring the total land area covered by greenspace (i.e., city park
area) in cities (Fuller and Gaston, 2009; Richardson, Pearce,
Mitchell, & Kingham, 2013; Schroeder, 1986). In either case, these
methods primarily rely on long-range remotely-sensed image proces-
sing to classify landcover (i.e., satellite imagery such as LANDSAT,
ortho-aerial photographs or, more recently, LiDAR) (Homer et al.,
2007) or data derived from field surveys (Kardan et al., 2015).
Substantial drawbacks exist within each case, many of which present
particular challenges in an urban context. For example, traditional
remote-sensing techniques for vegetation cover have, most often, been
based on moderate-resolution imagery (e.g., 30 m in the case of openly
available data) which has limited utility at the scale of cities. Recent
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efforts exploiting high resolution active sensing like LiDAR are proving
well-suited for urbanscapes (MacFaden, O’Neil-Dunne, Royar,
Lu, & Rundle, 2012), however they can be hindered by specialized
proprietary software, high data-acquisition costs and significant labour
inputs. On the other hand, field-based surveys lack the automation and
the scale of big data sets (i.e., low-throughput), are prone to sampling
errors (Dickinson, Zuckerberg, & Bonter, 2010) and require enormous
organizational efforts. These methodological impediments also make it
difficult to achieve periodic resampling to asses changes in tree cover
and health over time.

Chiefly through machine learning models, computer vision scien-
tists are teaching computers to see the world at astounding rates of
success. However, few disciplines outside of the strict artificial intelli-
gence fields (e.g., robotics, driverless cars, software) have utilized these
advancements. One of the few examples bridging ecology and computer
vision technologies is the mobile app, Leafsnap, which identifies plant
species using automatic visual recognition (Kumar et al., 2012). If a
computer can learn to detect and quantify features of an environmental
scene from digital photographs (i.e., scene understanding), it stands that
those algorithms can be used to objectively quantify real-world features
and their spatial distribution within a landscape for a multitude of
applications. For instance, Naik et al. have developed computer vision
algorithms that process street-level imagery to quantify urban appear-
ance (Naik et al., 2014), urban change (Naik, Kominers, Raskar,
Glaeser, & Hidalgo, 2015), or even socio-economic indicators (Glaeser,
Kominers, Luca, & Naik, 2015). Opportunely, we now also have access
to entire cities in the form of geo-tagged, street-level images.

Using Google Street View images that represent a ground-based
perspective of city streets − streetscapes − and which cover a city-wide
extent, we develop and test a new method of rapid quantification and
mapping of urban vegetation, specifically trees. The method applies a
trained predictor to segment the amount of tree cover in a given image
of a city streetscape using multiple image features. We aim to
demonstrate that we can quantify the presence and perceived cover
of street-side trees with high spatial resolution at the city-scale by: i)
sampling a series of sequential neighbouring image scenes of the
streetscape; ii) predicting the amount of tree cover present in them
and; iii) modelling the relationship between the tree cover of these
neighbouring view-points. To estimate the accuracy and utility of this
approach we compare our method to contemporary remote-sensing
techniques used to estimate urban tree canopy cover (i.e., object-based
image analysis (OBIA) of high-resolution LIDAR data and multispectral
imagery).

The goal of this study is to present a novel method of measuring
trees in a city at extremely high-throughput; one that may not replace
existing techniques, but offers clear benefits such as being relevant to
the human perspective (i.e., the perceived tree cover), cheap, indepen-
dent of proprietary software and easily scaleable across cities.

2. Methods

2.1. Study areas and image datasets

We collected data on urban tree cover by using 456,175 geo-tagged
images from the two cities of New York (336,998 images) and Boston
(119,177 images) in the United States. However, for the vast majority of
the results presented, we focus on New York because the best-suited
tree canopy cover maps and street tree survey data we could acquire
were of New York. Images were sourced from the Google Street View
(GSV) application program interface (API) (Google Inc., 2014), were
acquired in 2014 and represent a ground-level, side-view perspective of
the city streetscape (Fig. 1C). All image collection points along city
roads were downloaded for a target city and this resulted in a GSV
image roughly every 15 m along a given roadway; these image samples
are hereafter referred to as GSV sampling points. However, due to the
protocol of the GSV system the 15 m interval could deviate by

approximately +/− 5 m. Given this, we define a neighbour sample
points as two GSV sampling points on the same road segment and a
minimum of 10 m and maximum of 20 m apart. Some GSV sampling
points, road segments or areas of the city did not have data for various
reasons (e.g., corrupt or missing data, no-coverage area). Notwithstand-
ing those instances, the sampling regime covered the full extent of the
cities’ official boundaries, though for the case of New York it did not
cover Staten Island (Fig. 1A & B).

Each digital photograph (Red-Green-Blue color channel jpeg image)
was acquired from the GSV API at a resolution of 400 by 300 pixels, at a
90° horizontal field of view, 90° heading (east) and a 10° pitch. The
level of pitch was chosen in order to optimize the capture of the
streetscape (i.e., decrease the amount of foreground composed only of
roadway). Fixing the image heading to 90° east for every sampling point
allowed us to compare how the road-to-image orientation would affect
the metrics and, ultimately, the ability to estimate tree cover. As such,
all sampling points were grouped into one of four categories based on
their road orientation, given 22.5° intervals around 360°: 1) N-S: GSV
sampling points lying on roads that are oriented in a north-south
direction (± 22.5° from 0° or 180°); 2) E-W: GSV sampling points lying
on roads oriented in an east-west direction (± 22.5° from 90° or 270°);
3) NW-SE: GSV sampling points lying on roads oriented in a diagonal
northwest- southeast direction (± 22.5° from 135° or 315°); 4) NE-SW:
GSV sampling points lying on roads oriented in a diagonal northeast-
southwest direction (± 22.5° from 45° or 225°).

In order to estimate the real-world surface area covered by each
GSV image, we modelled the 2-dimensional (horizontal and vertical)
surficial field of view (FOV) represented in an image at each sampling
point; i.e., the camera’s horizontal field of view (90°) and depth of field
projected onto the earth’s surface. We computed this FOV polygon for
each GSV sampling point which was then projected on the horizontal
surface plane to associate a surface area with the sampling point
(Fig. 1d). The length of the polygon (i.e., length of the right-angle
bisector) represents the approximate image depth of field. However, in
reality the depth of field varies with the presence, size and proximity of
objects occluding the horizon. We assume that a given length should, on
average, be representative of an urban streetscape. Therefore, we varied
this depth of field parameter and created four levels: 15 m, 25 m, 35 m
and 45 m from the GSV sampling point. In addition to the road-to-
camera orientation groups, we run our analysis at each of these depth of
field levels in order to determine which provides the best spatial
context for predicting real-world tree cover.

2.2. Tree detection using computer vision

We estimated the total area covered by trees in each image by
applying a multi-step image segmentation method developed by Hoiem
et al. (Hoiem, Efros, & Hebert 2005). On a per-image basis, the objective
of the method is to model geometric classes that depend on the
orientation of a physical object with relation to the scene and with
respect to the camera. Specifically, each image pixel is classified into
one of a few geometric classes: i) the ground plane; ii) surfaces that stick
up from the ground (vertical surfaces); iii) part of the sky plane.
Further, vertical surfaces are subdivided into planar surfaces facing left,
right or towards the camera and either porous (e.g. trees and their leafy
vegetation) or solid (e.g. a person or lamp post) non-planar surfaces.
Although this recognition approach differs from those that instead
model semantic classes (e.g., car, house, person, vegetation), it has
proven exceptionally powerful and efficient in cluttered outdoor scenes
like urban streetscapes and, most relevant to our application here, in
distinguishing human built structures from natural ones like trees.

The algorithm operates by first grouping image pixels into super-
pixels, which are groups of pixels assumed to share a single label (e.g.,
ground or sky) and respect coarse-level segment boundaries (e.g.,
edges) (Felzenszwalb &Huttenlocher, 2004). The algorithm then
groups regions of the image into homogenous segments using a
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