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a b s t r a c t

This paper is concerned with modeling composite beams with spanwise heterogeneity. We first formu-
late the original three-dimensional problem in an intrinsic form which admits a geometrically exact for-
mulation. Taking advantage of slenderness of beam structure and smallness of heterogeneity, we use the
variational asymptotic method to systematically obtain an effective beam model through simultaneous
homogenization and dimensional reduction. This approach is implemented in the commercial code VABS
using the finite element technique for the purpose of dealing with composite beams with spanwise het-
erogeneity in real applications. A few examples are used to demonstrate the capability of this new model.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Along with the rapidly increasing popularity of composite
materials and structures, research on accurate and general model-
ing of structures made of them has remained as a very active field
in the last several decades. Moreover the increased knowledge and
fabrication techniques of them are possible to manufacture new
materials and structures with optimized microstructures to
achieve the ever-increasing performance requirements. Although
it is logically sound to use the well-established finite element anal-
ysis (FEA) to analyze such materials and structures by meshing all
the details of constituent microstructures, it is not a practical and
efficient way, which requires an inordinate number of degrees of
freedom (i.e. computing cost) to capture the micro-scale behavior.

If the heterogeneous structure is considered as a periodic
assembly of many unit cells (UCs), which is the building block of
the heterogeneous material, and the size of UC (d) is much smaller
than the size of the structure (L) (i.e. g = d/L� 1), it is possible to
homogenize the heterogeneous UC with a set of effective material
properties through a micromechanical analysis of the UC. With
these effective properties, the analyst can replace the original het-
erogeneous structure with a homogeneous one and carry out struc-
tural analysis for global behavior. In the past several decades,
numerous micromechanical approaches have been suggested in
the literature, such as the self-consistent model [1–3], the varia-
tional approach [4,5], the method of cells [6–9], recursive cell

method [10], mathematical homogenization theories [11–13], fi-
nite element approaches using conventional stress analysis of a
representative volume element [14], variational asymptotic meth-
od for unit cell homogenization (VAMUCH) [15,16], and many oth-
ers (see, e.g. [17–21] for a review).

Many composite structures in real applications are also dimen-
sionally reducible structures [22] with one or two dimensions
much smaller than others. Composite beam structure is an exam-
ple with the cross-sectional dimension h much smaller than the
axial dimension (i.e. e = h/L� 1). If there are still many unit cells
along the cross sectional directions (i.e. g� e), we can use the tra-
ditional two-step approach that performs homogenization using
micromechanics first to obtain effective properties of the heteroge-
neous material, then performs dimensional reduction to construct
a beam model for structural analysis. Usually, composite beams do
not have many unit cells in the cross-sectional plane. For example,
most sandwich beams only have many repetitive unit cells along
the longitudinal direction. That is, the periodicity is exhibited only
longitudinally and we have either e� g or e � g. As pointed out by
Kohn and Vogelius [23] for periodic plates if e� g, the order of the
aforementioned two-step approach should be reversed. That is, we
need to carry out the dimensional reduction to construct plate
models first, then homogenize the heterogeneous surface with
periodically varying plate properties. If e � g, the two steps in the
two-step approach should be performed at the same time, that
is, both small parameters (e and g) should be considered during
modeling of such structures. And several studies have shown that
models considering e and g simultaneously also give accurate re-
sults for the case e� g [24–26].

In recent years, the formal asymptotic method has been used to
study the case of periodic beams [27,28,25]. It is a modification to
the asymptotic homogenization method which is a direct
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application of the formalism of two scales to the original three-
dimensional (3D) equations governing the beam structure.
However, although these models are mathematically elegant and
rigorous without introducing ad hoc assumptions, it is not easy
to relate the equations derived using this method with simple
engineering models and extend this approach to geometrical non-
linear problems. Last but not least, it is difficult to implement these
theories numerically.

As a remedy to the shortcomings of formal asymptotic method,
we propose to use the variational asymptotic method (VAM) [29]
to construct effective beam models for these structures through
simultaneous homogenization and dimensional reduction. First,
the 3D anisotropic elasticity problem is formulated in an intrinsic
form suitable for geometrically nonlinear analysis. Then, consider-
ing both e and g, we use VAM to rigorously decouple the original
3D anisotropic, heterogeneous problem into a nonlinear one-
dimensional (1D) beam analysis on the macroscopic level and a lin-
ear 3D unit cell analysis with only axial periodicity on the micro-
scopic level. The unit cell problem can be easily implemented
using the finite element technique for numerically obtaining the
effective beam constants for the 1D beam analysis and recovering
the local displacement, strain, and stress fields based on the mac-
roscopic behavior. Several examples will be used to demonstrate
the application and accuracy of this new model and the companion
code VABS.

2. Three-dimensional formulation

In the 3D space, a beam can be modeled by a reference line r
measured by the axial coordinate x1, and by a typical cross section
A with h as its characteristic dimension. A can be described by
cross-sectional Cartesian coordinates xa (here and throughout the
paper, Greek indices assume values 2 and 3 while Latin indices
assume 1, 2, and 3. Repeated indices are summed over their range
except where explicitly indicated). Let us now consider a heteroge-
neous beam formed by periodic repetition of a certain UC (X) over
the beam axial coordinate x1 along r (see Fig. 1). To describe the ra-
pid change in the material characteristics in the axial direction, we
need to introduce one so-called ‘fast’ coordinate y1 parallel to x1.
These two sets of coordinates are related as y1 = x1/g.

If the UC is a cuboid as depicted in Fig. 1, we can describe the
domain (X) occupied by the UC using y1 and xa as

X ¼ ðy1; x2; x3Þ �
d1
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As our goal is to homogenize the heterogenous beam, we need to
assume that the exact solutions of the field variables have volume
averages over X. For example, if ui(x1,x2,x3;y1) are the exact
displacements within the UC, there exist vi(x1) such that

v i ¼
1
X

Z
y1

Z
x2

Z
x3

uidy1dx2dx3 ¼
1
X

Z
X

uidX � uih i ð2Þ

Due to the existence of a distinct scale separation between two
types of spatial variations described by y1 and x1, the derivative of
a function ui defined in X with respect to x1 can be evaluated as

@uiðx1; x2; x3; y1Þ
@x1

¼ @ui

@x1
jy1¼const þ

1
g
@ui

@y1
jx1¼const � u0i þ

1
g

uij1 ð3Þ

Note that in real calculation, g is not a number but denoting the or-
der of the term it is associated with.

Letting bi denote an orthonormal triad tangent to xi for the
undeformed structure, one can then describe the position of any
material point along r by its position vector r̂ relative to a point
O fixed in an inertial frame, such that

r̂ðx1; x2; x3Þ ¼ rðx1Þ þ xabaðx1Þ ð4Þ

where r is the position vector from O to the point of the reference
line and r0 = b1.

When the beam deforms, the particle that had position vector r̂
in the undeformed state now has position vector bR in the deformed
configuration, such as

bRðxi; y1Þ ¼ Rðx1Þ þ xaTaðx1Þ þwiðx1; x2; x3; y1ÞTiðx1Þ ð5Þ

where R denotes the position vector of the reference line for the de-
formed structure, Ti forms a new orthonormal triad for the de-
formed beam configuration and T1is specifically tangent to the
deformed reference line, and wi are the warping functions, which
are introduced to accommodate all possible deformation other than

Fig. 1. A heterogeneous beam with representative periodicity cell.
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