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a b s t r a c t

The vibrations of the shallow shell with geometrical nonlinearity submerged in a fluid are considered.
Interaction of the shell with a fluid is described by linear hypersingular integral equation, which is solved
by the boundary element method. The vibrations of the shell are described by the nonlinear finite-
degree-of-freedom system. The vibrations are studied by the Shaw–Pierre nonlinear modes.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Shells structures interacting with a fluid describe the elements
of missiles, energetic and transport equipments. Such structures
frequently perform vibrations, which might lead to fatigue break-
ing. Therefore, scientists and engineers are interested in investiga-
tions of interaction of fluid with thin-walled structures. Interaction
of the closed cylindrical shells with fluids is considered in most
studies devoted to this question [1]. Shallow shells submerged in
a fluid are given less attention. Lindholm et al. [2] studied experi-
mentally free vibrations of a cantilever plate particularly sub-
merged in a fluid. Using the theory of potential flow, Meyerhoff
[3] determined added masses of a fluid on square plate. He de-
scribes a pressure difference of fluid using dipole singularity.
Korobkin and Khabakhpasheva [4] and Wang et al. [5] analyzed
floating elastic shells interacting with a fluid on one side. Linear
vibrations of a cantilever plate particularly submerged in a fluid
are analyzed by Ergin and Ugurlu [6]. Wet vibrations eigenmodes
are determined as a linear combination of dry eigenmodes, which
are calculated by the finite element method. The paper [7] is de-
voted to the method of frequencies calculations for hydraulic tur-
bine blades submerged in a fluid. The calculations are performed
by the finite element method. In general, finite element method
is frequently used to analyze linear vibrations of plates submerged
in a fluid [8,9]. Fu and Price [10] studied the dynamics of a cantile-
ver plate fully or partially submerged in a fluid. They determined
the general forces of a fluid acting on plate surfaces. The orthogo-
nality of the eigenmodes of the shallow shell fully or partially sub-

merged in a fluid is studied by Fang [11]. Tosh and Frendi [12]
analyzed forced vibrations of a clamped plate with geometrical
nonlinearity interacting with a fluid. It is shown, that, if the exter-
nal force amplitude is increased, the periodic vibrations of the shell
are transformed into chaotic ones. Green and Sader [13] analyzed
the vibrations of a beam submerged in a fluid. It is assumed that
a fluid is restricted by a rigid wall near the vibrating body. The
authors conclude that the wall changes qualitatively the vibrations
of the beam. Kantor and Strel’nikova [14] and Naumenko and
Strel’nikova [15] considered different numerical and analytical
methods for solutions of hypersingular integral equations. The
linear plate vibrations in a fluid are described by these integral
equations. Finite element analysis of fluid interacting with struc-
tures is considered by Bathe and his coauthors [16–21]. The choice
of the finite elements to obtain the solutions with enough accuracy
is discussed in [20,21].

The vibrations of the shallow shell with complex base sub-
merged in a potential fluid are treated in this paper. It is assumed
that the shell performs geometrical nonlinear deformations and a
fluid is described by linear model. The thin shell is considered.
Therefore, shear and rotational inertia are not taken into account.
The influence of a fluid on a shell is described by the hypersingular
integral equation, which is solved by the boundary element meth-
od. Nonlinear vibrations of the shells interacting with a fluid are
expanded into truncated wet eigenmode series. Finite-degree-of-
freedom model is derived. The Shaw–Pierre nonlinear normal
modes are used to analyze the obtained dynamical system. The
novelty of this paper is the following. The nonlinear vibrations of
the flexible shallow shells with complex base and variable thick-
ness interacting with a fluid are investigated.

The paper is organized in the following way. Section 2 is
devoted to the analysis of linear vibrations of the shallow shells
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with variable thickness. Mathematical model of a fluid and method
of linear vibrations analysis are treated in Section 3. The system of
ordinary differential equations describing the nonlinear vibrations
of the shallow shells interacting with a fluid is derived in Section 4.
In the final sections the suggested approach is applied to analyze
the nonlinear vibrations of hydraulic turbine blade.

2. Shell linear vibrations in vacuum

The vibrations of the shallow shells with complex base, variable
thickness and arbitrary curvature are considered in this paper. The
shallow shell is clamped on the part of the contour and free on the
rest part. As thin shells are analyzed, rotary inertia and shear defor-
mations are not taken into account. Fig. 1 shows the middle surface
of the shell. Two orthogonal directions, which are lines of the prin-
ciple curvatures, are taken on the shell middle surface. Curvilinear
coordinates a and b are counted off along these lines (Fig. 1). The
third axis z is directed orthogonal to the plane base.

The aim of this paper is analysis of vibrations of the shallow
shell accounting geometrical nonlinearity. However, it is impossi-
ble to analyze nonlinear vibrations without a previous analysis of
linear vibrations. Therefore, the linear vibrations of shell are
treated in detail.

The boundary conditions on the clamped part of the shell are
the following:

w ¼ @w
@n
¼ 0; u ¼ 0; v ¼ 0; ða;bÞ 2 @K; ð1Þ

where u(a, b, t), v(a, b, t), w(a, b, t) are projections of the displace-
ments of the middle surface points on a, b, z, respectively; @K is a
clamped part of the shell boundary, n is normal to oK.

The Rayleigh–Ritz method is used to calculate the eigenfre-
quencies and the eigenmodes of linear vibrations. In this case only
geometric boundary conditions are satisfied. It is assumed that the
squares of rotation angles of the middle surface normal are signif-
icantly less than unit. The potential energy of the shell has the fol-
lowing form [22,23]:
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where e11, e22, e12 are middle surface strains; v1, v2, j are curvatures
and torsion of the middle surface; h(a, b) is the variable thickness of
the shell; A ¼ ffiffiffiffiffiffiffi

g11
p

and B ¼ ffiffiffiffiffiffiffi
g22
p

are Lame parameters; g11 and g22

are the coefficients of the first quadratic form of the middle surface;
( )a and ( )b are denoted differentiation with respect to a and b,
respectively. The integral is taken over the area of the shell base
K. In this section the linear vibrations are treated and the nonlinear
terms are not taken into account in expressions (3). The kinetic en-
ergy of the shell is the following:

T ¼ q
2

Z
K
ð _w2 þ _u2 þ _v2Þhða;bÞABdadb; ð4Þ

where q is a density of a shell material.
Linear periodic vibrations are presented as

uða; b; tÞ ¼ Uða; bÞ expðixtÞ;
vða;b; tÞ ¼ Vða;bÞ expðixtÞ;
wða;b; tÞ ¼Wða;bÞ expðixtÞ:

The minimum value of the Lagrange functional L = T � P is
determined to obtain the parameters of the shell linear vibrations.
In order to obtain this minimum value the eigenmodes of the shell
vibrations are expanded into the truncated series of trial functions
in the following way:

Wða;bÞ ¼
XN1

i¼1

aiwiða;bÞ;

Uða;bÞ ¼
XN2

i¼N1þ1

aiuiða; bÞ

Vða;bÞ ¼
XN3

i¼N2þ1

aiv iða; bÞ;

ð5Þ

where wi(a, b), ui(a, b), vi(a, b) are trial functions. Eqs. (5) are substi-
tuted into the Lagrange functional and the following function is
obtained:

L ¼ Lða1; . . . ; aN3 Þ: ð6Þ

The determination of the minimum of the Lagrange functional
is reduced to the following equations: oL/oaj = 0; j = 1, ,... , N3. These
equations can be presented in the form of the eigenvalue problem:

ðK �x2CÞeA ¼ 0; ð7Þ

where eA ¼ ða1; . . . ; aN3 Þ.

3. Linear vibrations of the shell interacting with a fluid

The free vibrations of the shallow shells in perfect incompress-
ible fluid are considered. The pressure difference is determined to
calculate the eigenfrequencies and eigenmodes of linear vibrations.
It is assumed that the fluid motion is irrotational and the velocity
potential U satisfies the Laplace equation

DUðx; tÞ ¼ 0;

where x is spatial coordinate vector. The boundary conditions on
the shell surfaces S have the following form:

@Uðx; tÞ
@n

����
S�
¼ @wðx; tÞ

@t

����
S�
:

If ||x|| ?1, the velocities of fluid motions tend to zero:

lim
kxk!1

rUðx; tÞ ¼ 0:

This expression is called the Sommerfeld condition [14].
The equations of the vibrations of the shell interacting with a

fluid can be presented in the following operational form:Fig. 1. Sketch of the middle surface of the shallow shell.
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