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a b s t r a c t

In this research, a significant improvement in reservoir operation was achieved using a state-of-the-art
evolutionary algorithm named Borg MOEA. A real-world multipurpose dam was used to test the algo-
rithm's performance, and the target of the reservoir operation policy was to fulfil downstream water
demands in drought condition while maintaining a sustainable quantity of water in the reservoir for the
next year. The reservoir's performance was improved by increasing the maximum reservoir storage by
14.83 million m3. Furthermore, sustainable water storage in the reservoir was achieved for the next year,
for the simulated low flow condition considered, while the total annual imbalance between the monthly
reservoir releases and water demands was reduced by 64.7%. The algorithm converged quickly and
reliably, and consistently good results were obtained. The methodology and results will be useful to
decision makers and water managers for setting the policy to manage the reservoir efficiently and
sustainably.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Multipurpose reservoirs are widely used to serve multiple de-
mands for domestic, industrial, irrigation, environment, hydro-
power production and flood control, to maximize the economic
benefits. These types of systems are complex because of the
nonlinear storage-inflow relationship, conflicting objectives, dy-
namic properties, nonlinear constraints, etc. (Haimes and Hall,
1977). In the field of water resources management, significant de-
mands onwater exploitationwere observed in recent decades. This
raises the challenge to manage and allocate water in a sustainable
way, and reservoirs are essential for water resources management
in a river basin (Horne et al., 2016; Jothiprakash and Shanthi, 2006).

Many methods for optimization were found to solve different
types of problems such as linear programming, non-linear pro-
gramming and dynamic programming, etc. (Horne et al., 2016).
However, the classical optimization methods are generally not
suitable for such complex problems for a number of reasons. For
example, typically, they provide a single local optimum solution.
Evolutionary algorithms on the other hand, use a population of

solutions rather than one solution in every iteration (Deb, 2001). In
recent decades, evolutionary optimization algorithms were widely
used in different fields of engineering and science to solve real-
world problems (Coello et al., 2007).

Regarding engineering applications, Formiga et al. (2003) used
the Non-dominated Sorting Genetic Algorithm (NSGA II) to solve
water distribution network problems. R�egnier et al. (2005) applied
NSGA II in electromechanical system design. In structural design,
Tract (1997) used a genetic algorithm (GA) with Pareto ranking in
truss design. Deb and Tiwari (2005) used NSGA II for design in the
field of mechanical engineering. In the field of civil engineering,
Feng et al. (1999) used a GA with Pareto ranking to optimize
building construction planning.

To achieve effective operational management policies for water
resources management problems, many researchers used different
optimization approaches (Horne et al., 2016). Sharif and Wardlaw
(2000) used a GA to maximize the hydropower production while
allowing deficits to occur in irrigation supplies. Chenari et al. (2014)
also used a GA to determine the releases from a reservoir.
Furthermore, Tilmant et al. (2002) used fuzzy stochastic dynamic
program to optimize the control rules for a multipurpose reservoir.
Kim and Heo (2006) used MOGA (multi-objective genetic algo-
rithm) to solve a multi-reservoir multi-objective problem. Wu and
Zou (2012) applied MOGA to maximize both power generation and
irrigation benefits. Scola et al. (2014) applied NSGA II to maximize
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power generation. Cancelliere et al. (2003) used a multi-objective
optimization method to reduce the deficit in the releases for irri-
gation and improve municipal volumetric reliability.

Borg MOEA is a recent optimization algorithm that was intro-
duced by Hadka and Reed (2013). In this research, Borg MOEA was
used to solve a reservoir operation problem. These types of prob-
lems need a powerful algorithm to handle the complexity of the
inflow-storage relationship. The Borg MOEA algorithm has six op-
erators that compete to create offspring in each generation. The
effectiveness of the algorithm is maintained throughout the opti-
mization by deploying the most suitable combination of operators
for crossover. In addition, Borg MOEA is able to detect stagnation
and escape from local optima by reviving the search process.

The aim of the current study was to investigate the robustness
and performance of the algorithm on a reservoir operation prob-
lem. A drought condition and an additional reservoir drawdown
constraint were considered in order to test the algorithm's ability to
find good solutions consistently in such critical conditions. In
reservoir management, it is difficult to control the releases over the
entire year in order to fulfil the downstream demands and to
maintain the same or higher initial water storage in the reservoir
for the next year in drought conditions. Hence, the influence of the
extra drawdown constraint imposed was investigated.

2. Overview of the optimization approach

Hadka and Reed (2013) introduced Borg MOEA for many-
objective optimization problems. Some of the features in Borg
MOEA include (a) diversity preservation; (b) measurement of
search progress and stagnation; (c) restart to move away from local
optima; (d) multiple recombination operators that compete to
produce offspring; and (e) use of a dominance archive. The algo-
rithm uses six operators in the recombination process to improve
the search progress and a dominance archive to store all the non-
dominated solutions.

To preserve diversity, the objective space is divided into hyper-
boxes whose dimensions are all equal to ε, as in Fig. 1. Thus the
ε-box index vector is used to find the dominant solutions instead of
the objective function values. The algorithm calculates this index by
dividing the objective function value by ε, and then sets the result as
the succeeding integer value. If two or more solutions are in the
same ε-box, the dominant solution is the one which is nearest to
the lower-left corner of the ε-box, in the case of a minimization
problem.

For stagnation measurement, ε-progress was introduced, which
measures the improvement while searching for new solutions. If
the algorithm finds new solutions in a new unoccupied ε-box, it
means that there is progress and the algorithm is allowed to
continue. This can be observed more clearly in Fig. 1. On the other
hand, if there is no improvement based on ε-progress for a certain
number of evaluations, a revival process is triggered, to escape from
any local optima. The details of the restart procedure are available
in Hadka and Reed (2013). The algorithm maintains the population
size as a certain ratio of the archive size during the optimization
process. This feature was adopted from ε-NSGA II (Kollat and Reed,
2006) and is called the injection rate.

The algorithm employs multiple recombination operators to
produce offspring. In fact, Borg MOEA provides a framework in
which the selection of the recombination operators adjusts
depending on the dynamic properties of the objective and solution
spaces of the optimization problem, including the make-up and
diversity of the candidate solutions, and the landscape of the ob-
jectives. The recombination operators in Borg MOEA are:

(a) simulated binary crossover (SBX) (Deb and Agrawal, 1994);

(b) differential evolution (DE) (Storn and Price, 1997);
(c) parent-centric crossover (PCX) (Deb et al., 2002a,b);
(d) unimodal normal distribution crossover (UNDX) Kita et al.

(2000);
(e) simplex crossover (SPX) (Tsutsui et al., 1999); and
(f) uniform mutation (UM) (Michalewicz et al., 1994).

Also, the polynomial mutation (PM) (Deb and Agrawal, 1994) is
applied to the offspring produced by all the operators except for
UM.

The probability of choosing a particular recombination operator
to produce offspring depends on its ability to contribute non-
dominated solutions in the dominance archive, compared to the
other operators; hence the operator selection probabilities are
proportional to their effectiveness and respective contributions.

The values of the decision variables in the offspring generated
liewithin the upper and lower bounds of the decision variables. The
algorithm has many coefficients and parameters as summarised in
Table 1 (Hadka and Reed, 2013) inwhich L represents the number of

Fig. 1. Graphical representation of the ε-progress concept in a minimization problem
with two objectives. Solutions (1) and (2) are new solutions in unoccupied boxes and
thus represent improvements. Solution (3) is not considered as an improvement
because it resides in a previously occupied box. The shaded boxes were previously
occupied while the unshaded boxes were not previously occupied (Hadka and Reed,
2013).

Table 1
Default values of the parameters used in Borg MOEA.

Parameter Value Parameter Value

Initial population size 100 SPX parents 10
Tournament selection size 2 SPX offspring 2
Epsilon, ε 0.01 SPX epsilon 2.0
SBX rate 1.0 UNDX parents 10
SBX distribution index 15.0 UNDX offspring 2
DE crossover rate 1.0 UNDX sx 0.5
DE step size 3.0 UNDX sh 0.35/

ffiffiffi
L

p

PCX parents 10 UM rate 1/L
PCX offspring 2 PM rate 1/L
PCX sh 0.1 PM distribution index 20
PCX sz 0.1

ε is the dimension of hyper-boxes in objective space; L is the number of decision
variables; and the various s symbols are variance-related parameters.
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