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Abstract

In this work, a spatial beam element for geometrically and materially non-linear analysis of framed structures is pre-

sented in this work. The equilibrium equations of a straight beam element are formulated using an updated Lagrangian

(UL) incremental description. Internal moments are represented as the resultants of stresses calculated by engineering

theories: Euler–Bernoulli–Navier theory for bending and Saint-Venant theory for torsion. Although the element devel-

oped can undergo large displacements and rotations, strains are assumed to be small. The non-linear cross-sectional

displacement field including large rotation effects is introduced in the analysis, resulting in the geometric potential of

bending and torsional moments which corresponds to that of semitangential behaviour. In such a way, the joint equi-

librium of non-collinear elements is provided. For the force recovering, the external stiffness approach (ESA) is pre-

sented as an alternative to the common natural deformation approach (NDA). Material non-linearity is introduced

for an elastic–perfectly plastic material through the plastic hinge formation at finite element nodes and for this a

new plastic reduction matrix of the element is determined. The interaction of element forces at a hinge and the possi-

bility of elastic unloading are taken into account. The effectiveness of the numerical algorithm discussed is validated

through the test problem.
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1. Introduction

In the field of structural engineering beams and

frames constitute a very important class of load-carrying

components, where they are applied both in their stand-

alone forms and as stiffeners for some plate or shell

assemblages [1,2]. Because such structures, especially

those of thin-walled cross-sections, could display very

complex structural behaviour under a large displace-

ment and rotation regime [3], the development of ad-

vanced non-linear beam models, which comprise both

geometric and material inelasticity, has been a major

activity of many structural engineering researchers in

the past years [4–8].
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In the non-linear finite element analysis, a response

of a load-carrying structure is usually solved using some

of incremental descriptions like the total and updated

Lagrangian ones, respectively, or the Eulerian descrip-

tion [9,11]. Each description utilizes a different structural

configuration for system quantities referring and results

in the form of a set of non-linear equilibrium equations

of the structure. This set can further be linearized and

should be solved using some incremental-iterative

scheme, which consists of three main phases. The first

or predictor phase comprises evaluating the overall

structural stiffness and solving for the displacement

increments from the approximated incremental equilib-

rium equations for the structure. Using the standard

transformation process displacement increments of each

finite element can be determined immediately. The sec-

ond or corrector phase involves the geometry updating

of each finite element and the determination of element

nodal forces using some force recovery algorithm. The

third or checking phase comprises checking if the

adopted convergence criterion of iteration is achieved

in the current increment by comparing with the pre-set

tolerance value.

The first part of the present work comprises only geo-

metrical non-linearities of an elastic, straight and pris-

matic beam member with solid and doubly symmetric

cross-sections. Displacements and rotations are allowed

to be large but strains are small. Loading of a consider-

ing structure is assumed to be static and conservative,

while internal moments are represented as the resultants

of stresses calculated by engineering theories. The ele-

ment geometric stiffness is derived using the updated La-

grangian description and the non-linear displacement

field of a beam cross-section, which includes non-linear

displacement terms due to three-dimensional rotation ef-

fects. In such a way, the incremental geometric potential

corresponding to the semitangential bending and tor-

sional moments is obtained, ensuring thus the moment

equilibrium conditions at a joint of beam members with

different space orientations [12]. For the force recover-

ing, the natural deformation approach (NDA) is

frequently used in the updated Lagrangian (UL) incre-

mental formulation, but its application requires a finite

element to pass the rigid-body test [13]. If this test is

not passed, the NDA cannot serve as the force recovery

algorithm and, instead, some alternative should be avail-

able and thus, the external stiffness approach (ESA)

is proposed in this work. At this approach, the exter-

nal stiffness matrix of a beam element is included in

the force recovering to exclude the rigid-body effects

[14].

Introducing the possibility of elastic–perfectly plastic

material behaviour, the analysis is further enhanced to

the elastic–plastic material behaviour. Although the

plastic-zone model is usually considered as the �exact
model� because it explicitly accounts for the spread of

plasticity throughout the beam member [15], in this

work, because of the computational advantages, the

plastic hinge model is applied [16]. In such an elastic–

plastic model, it is assumed that all plastic effects, when

occur, are concentrated in the zero-length plastic hinges

at the finite element ends, while the element between

hinges remains linear-elastic. Supposing the existence

of a single-function yield surface in terms of the beam

stress-resultants obtained by the ESA and using the nor-

mality principle, a plastic reduction matrix of the beam

element is consistently derived, a function of which is to

keep the element incremental forces at a plastic hinge to

move tangentially to the yield surface [17]. Since at the

end of that increment the yield criterion is violated,

the return of element nodal forces at a plastic hinge to

the yield surface should be performed. The abovemen-

tioned numerical algorithm is implemented into a com-

puter program and the effectiveness is validated through

the test problem.

2. Basic considerations for solid beam

2.1. Kinematics of beam

The deformation of an initially straight beam with

undeformable cross-section is studied. A right-handed

Cartesian co-ordinate system (z,x,y) is chosen in such

a way that z-axis coincides with the beam axis passing

through the centroid O of each cross-section, while

x- and y-axes are the principal inertial axes of the

cross-section. Incremental displacement measures of a

cross-section are defined as

wo ¼ woðzÞ; uo ¼ uoðzÞ; vo ¼ voðzÞ;

uz ¼ uzðzÞ ux ¼ � dvo
dz

¼ uxðzÞ;

uy ¼
duo
dz

¼ uyðzÞ ð1Þ

where wo, uo and vo are rigid-body translations of the

cross-section in the z-, x- and y-direction at the centroid,

respectively; uz, ux and uy are rigid-body rotations

about the z-, x- and y-axis, respectively.

Let r0 denotes the position vector of a material

point in the reference configuration and Uo the trans-

lation displacement vector of the centroid. If the

assumption of small rotations is valid, then the dis-

placement vector Uldf, representing the linear displace-

ment field of a cross-section, can be written in the

following form:

Uldf ¼ Uo þ ~ur0 ð2Þ

where
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