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Abstract

A semi-analytical method is developed in conjunction with shearable shell theory and modal expansion approach to

predict the influence of geometrical non-linearities on free vibrations of anisotropic laminated cylindrical shells. Shear

deformation and rotary inertia effects are taken into account in the equations of motion. The hybrid method developed

in this theory is a combination of classical finite element approach, shearable shell theory and modal coefficient proce-

dure. The displacement functions are obtained by the exact solution of the equilibrium equations of anisotropic cylin-

drical shells and thereafter, the mass and linear stiffness matrices are derived by exact analytical integration. Green exact

strain–displacement relations are used to obtain the modal coefficients for these displacement functions. The second-

and third-order non-linear stiffness matrices are then calculated by precise analytical integration and superimposed

on the linear part of equations to establish the non-linear modal equations. The linear and non-linear natural frequency

variations are determined as a function of shell parameters for different cases. The comparison shows that the numerical

analysis is of good reliability on the prediction of the experimental results.
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1. Introduction

The design of missiles and launch vehicles, nuclear

components and shipbuilding structures makes extensive

use of composite cylindrical shells. The reliability of

these structures depends directly on their component

performance. Therefore, the dynamic behaviour of these

structures is of keen interest in the design of structural

elements in the space and aeronautical, petroleum and

nuclear industries. These cylindrical structures often

experience large amplitude vibrations, which are greater

than the shell thickness. This problem has given rise to a

number of studies of the non-linear vibrations of cylin-

drical shells subjected to different loads. In addition,

due to the high ratio of tangential Young�s modulus to

transverse shear modulus in composite materials such

as graphite–epoxy and boron–epoxy, the shear deforma-

tion effect on the non-linear behaviour of anisotropic

composite shells is more significant than that of isotropic

ones. This effect plays a very important role in reducing

the effective flexural stiffness of anisotropic composite

plates and shells.

Many works exist in the literature concerning non-

linear models for isotropic [1–3] and anisotropic shell

analysis [4–7]. Also, a number of theories for layered
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anisotropic shells exist [8], which are developed for thin

shells and are based on the Kirchhoff–Love hypothesis.

Most of these approaches can include various degrees of

non-linearity in the strain–displacement relations in rep-

resenting the displacement and rotations. A more rigor-

ous study of non-linear free flexural vibrations of

circular cylindrical shells was conducted by Atluri [9]

who compared his results with the available data

and concluded the possibility of the softening type of

non-linearity. A set of non-linear strain–displacement

relations for axisymmetric thin shells, based on the Kir-

chhoff assumptions, subject to large displacements with

moderate rotations by retaining more terms are given in

[10]. This work is based on the Kirchhoff assumptions.

It is shown that non-linear strains arising from products

of in-plane strain terms, which were omitted in some

theories, may be important in certain buckling prob-

lems.

An overall concept of the non-linear analysis of shell

structures is developed in [11]. This monograph outlines

a survey of theories for the analysis of plates and shells

with small deflections that then lead to the theory of

shells undergoing large deflections and rotations appli-

cable to elastic laminated anisotropic shells. For a recent

survey and discussions about the perspectives in non-lin-

ear vibrations of shells see [12–14] that contain extensive

Nomenclature

A, B, C, D, E defined by Eq. (2)

AAjk,BBjk,. . .,TTjk modal coefficients determined by

Eq. (18)

AAijk,BBijk,. . .,TTijk modal coefficients determined

by Eq. (16)

AAijks,BBijks,. . .,TTijks modal coefficients deter-

mined by Eq. (17)

AUX ð1Þ
ijk ; . . . ;AUX

ð58Þ
ijk modal coefficients determined

by Eq. (16)

AUX ð1Þ
ijks; . . . ;AUX

ð58Þ
ijks modal coefficients determined

by Eq. (17)

fi(i=1–10) coefficients of determinant of the matrix

[H], Eq. (3)

kij
L general element of linear stiffness matrix, Eq.

(15)

kNL2
ijk general element of second-order non-linear

stiffness matrix, Eq. (15)

kNL3
ijks general element of third-order non-linear

stiffness matrix, Eq. (15)

L length of shell

Li equations of motion, Eq. (1)

m axial mode number

m defined by mp
L

mij general element of mass matrix, Eq. (15)

Mx, Mh, Mxh, Mhx moment resultants

n circumferential wave number

Nx, Nh, Nxh, Nhx in-plane force resultants

Pij terms of elasticity matrix, Eq. (1)

Qxx, Qhh the transverse force resultants, Eq. (8)

R mean radius of the shell

t thickness of the shell

u, v, w axial, circumferential and radial displace-

ment respectively

Um, Vm, Wm, bxm, bhm amplitudes of u, v, w, bx, and
bh associated with mth axial mode number

x axial coordinate

ai, bi, ci and di defined by Eq. (4)

bx and bh the rotations of the normal about the coor-

dinates of the reference surface

gi complex roots of the characteristic, Eq. (3)

eL linear deformation vector, Eq. (7)

eNL non-linear deformation vector, Eq. (11)

e0x and e0h normal strains of the reference surface

c0x and c0h in-plane shearing strains of the reference

surface

jx and jh change in the curvature of the reference

surface

sx and sh torsion of the reference surface

l0x and l0h shearing strains

h circumferential coordinate

/T angle for the whole open shell

q density of the shell material

Ci vibration amplitude

wi defined in Eq. (27)

List of matrices:

[A](10·10) defined by Eq. (5)

[B](10·10) defined by Eq. (7)

[H](5·5) defined by Eq. (3)

[k(L)] linear stiffness matrix, Eq. (9)

[k(NL2)] second-order stiffness matrix, Eq. (16)

[k(NL3)] third-order stiffness matrix, Eq. (17)

[m] mass matrix, Eq. (9)

[N] shape function matrix, Eq. (6)

[P] elasticity matrix, Eq. (8)

{C} vector for arbitrary constants, Eq. (5)

{q} time-related vector, Eq. (10)

{di} degrees of freedom at node i

{eL} and {eNL} linear and non-linear deformation

vector, Eq. (11)
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