Contents lists available at ScienceDirect

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Research article

Life cycle assessment of carbon capture and utilization from ammonia process in Mexico

M.A. Morales Mora ^{a, *}, C. Pretelín Vergara ^b, M.A. Leiva ^c, S.A. Martínez Delgadillo ^d, E.R. Rosa-Domínguez ^e

^a Coordinación de Sustentabilidad, Gerencia de Eficiencia Energética y Sustentabilidad, PEMEX. Jacarandas 100, Col. Rancho Alegre, CP. 96558, Coatzacoalcos, Veracruz, Mexico

^b Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Av. Sn. Claudio y 18 sur, Col. Jardines de San Manuel, 72570, Puebla, Pue, Mexico

^c Gerencia de Eficiencia Energética y Sustentabilidad, PEMEX, Av. Marina Nacional 329, Col. Petróleos Mexicanos, Del. Miguel Hidalgo, CP.11311, Ciudad de México, Mexico

^d Depto. Ciencias Básicas, Universidad Autónoma Metropolitana–Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 02200, D. F. Mexico

^e Facultad de Química-Farmacia, Universidad Central Marta Abreu de Las Villas, Cuba, Carretera Camajuaní km 5½, Santa Clara, Villa Clara, C.P. 54830, Cuba

A R T I C L E I N F O

Article history: Received 12 July 2016 Received in revised form 29 August 2016 Accepted 16 September 2016 Available online 28 September 2016

Keywords: Ammonia process Carbon capture and utilization (CCU) Enhanced oil recovery Global warming Life cycle assessment Process simulation

ABSTRACT

Post-combustion CO₂ capture (PCC) of flue gas from an ammonia plant (AP) and the environmental performance of the carbon capture utilization (CCU) technology for greenhouse gas (GHG) emissions to an enhanced oil recovery (EOR) system in Mexico was performed as case study. The process simulations (PS) and life cycle assessment (LCA) were used as supporting tools to quantify the CO₂ capture and their environmental impacts, respectively. Two scenarios were considered: 1) the AP with its shift and CO₂ removal unit and 2) Scenario 1 plus PCC of the flue gas from the AP primary reformer (AP-2CO₂) and the global warming (GW) impact. Also, the GW of the whole of a CO₂-EOR project, from these two streams of captured CO₂, was evaluated. Results show that 372,426 tCO₂/year can be PCC from the flue gas of the primary reformer and 480,000 tons/y of capacity from the AP. The energy requirement for solvent regeneration is estimated to be 2.8 MJ/kgCO₂ or a GW impact of 0.22 kgCO_{2e}/kgCO₂ captured. GW performances are 297.6 kgCO_{2e} emitted/barrel (bbl) for scenario one, and 106.5 kgCO_{2e} emitted/bbl for the second. The net emissions, in scenario one, were 0.52 tCO_{2e}/bbl and 0.33 tCO_{2e}/bbl in scenario two. Based on PS, this study could be used to evaluate the potential of CO₂ capture of 4080 t/d of 4 ammonia plants. The integration of PS-LCA to a PCC study allows the applicability as methodological framework for the development of a cluster of projects in which of CO₂ could be recycled back to fuel, chemical, petrochemical products or for enhanced oil recovery (EOR). With AP-2CO₂ "CO₂ emission free" ammonia production could be achieved.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the oil and gas industry, in 2013 CO_2 emissions from fuel combustion oil were 10.8 Gt and 6.3 Gt from natural gas, accounting for 50% of global energy-related CO_2 emissions (IEA, 2015a). CO_2 represents the highest greenhouse gas (GHG) emissions along the

* Corresponding author.

whole production chain in the oil and gas downstream industry. These are due to the combustion of fossil fuels as well as process streams in the refineries and petrochemical complexes (Kuramochi et al., 2012). However, in the petrochemical industry where the CO₂ capture unit is part of the industrial process, the CO₂ emissions of high purity from processes streams have already been used as feedstock for chemicals. (Aresta et al., 2013).

Four basic strategies have been considered for reducing CO_2 emissions in the power and industry sectors: post-combustion capture, pre-combustion capture, oxyfuel combustion, and industrial processes (IPCC, 2006; Kuramochi et al., 2012; Spigarelli and Komar Kawatra, 2013).

E-mail addresses: miguelam133@gmail.com (M.A. Morales Mora), pretelinvf@ yahoo.com.mx (C.P. Vergara), mleiva2000@yahoo.com.mx (M.A. Leiva), samd@ correo.azc.uam.mx (S.A. Martínez Delgadillo), erosa@uclv.edu.cu (E.R. Rosa-Domínguez).

Recently, carbon capture and utilization (CCU) and carbon capture and storage (CCS), have been seen as the technological options for the power sector that could help to mitigate the climate change (Cooney et al., 2015) when CO_2 is used as a feedstock for the industry, and therefore, reducing anthropogenic CO₂ emissions into the atmosphere (Aresta et al., 2013; Dimitriou et al., 2015; Armstrong and Styring, 2015; Xiaozhi L, 2015). Nevertheless, EPRI (2013) discusses that the above mentioned technologies can give products that would sequester the CO₂ for a lengthy or short time. Armstrong and Styring (2015) analyzed that CCU technology can sequester 6.5 times more CO₂ than immiscible enhanced oil recovery (EOR)-CCS. Meylan et al. (2015) found in CCS significant disadvantages as high cost, low public acceptance, and long-term uncertainty. Although CO₂ can replace petrochemical feedstocks in the production of chemicals and fuels (Aresta et al., 2013; Styring et al., 2014), the energy intensive (200–350 °C) conversion presents a disadvantage, as well as that it requires high-selectivity catalysts due to its highly thermodynamic stability (Rojas et al., 2011; Cuellar-Franca et al., 2015; Dimitriou et al., 2015).

On the other hand, the unexpected decline in fossil fuel prices generates challenges and opportunities for decarbonising the energy system, particularly in the oil and gas industry. According to IEA (2015b), the oil prices in the current scenario will remain close to \$50/bbl until the end of this decade before rising gradually back to \$85/bbl in 2040. Thus, the relatively high cost of current CCS systems remains a major challenge in power plants and other industrial facilities (IPCC, 2014). For instance, according to Rubin et al. (2015) the current value cost of post-combustion (2013) is between 44 and 111 USD/tCO₂ captured for Natural Gas Combined Cycle Plants (NGCC). Leung et al. (2014) reported estimates of the total cost associated with CCS for electricity production in the range of 60–100 USD/ton CO₂. Given this scenario, the British government has decided to cancel the CCS scheme in the Peterhead Project of 10 MtCO₂/year. Also, the White Rose Project with 2 MtCO₂/year was cancelled (Enerdata, 2015). Hence, this fact and the climate response to five trillion tons of carbon as total cumulative emissions in the atmosphere (Tokarska et al., 2016), require further innovative alternatives or new technological developments. In this regard, the IEA (2015c) has modeled CO₂ reductions scenarios, involving a 13% carbon capture and storage (CCS), as well as other technological options to give the desired outcome of a less than 2 °C rise in temperature to avoid the consequent catastrophic effects on the boundary of the nine planetary systems (Rockström et al., 2009).

Hence, the evaluation of post-combustion CO₂ capture (PCC), mainly by chemical absorption in power plants (Wang et al., 2011, 2015; Spigarelli and Komar Kawatra, 2013) and the use of life cycle assessment (LCA) have been applied to evaluate the environmental impacts of the CCU systems considering different fossil fuel and technologies from electricity production (Marx et al., 2011; Zapp et al., 2012; Corsten et al., 2013; Hussain et al., 2013; von der Assen N. et al., 2014; Cuellar-Franca and Azapagic, 2015). Consequently, an increment has been observed in the use of computer tools for the design of PCC (González Díaz et al., 2010; Chikukwa et al., 2012; Sipocz and Tobiesen, 2012; Carpentieri et al., 2012; Fadeyi et al., 2013; Gaspar et al., 2014; Joel et al., 2014; Kangkang et al., 2014; Tock and Maréchal, 2015; Dimitriou et al., 2015; Yakub, 2015). However, the role of the industrial application in the downstream processes (natural gas processing, ethylene oxide, ammonia and hydrogen production) to CCUS has received little attention or there is insufficient information elsewhere (IEA-UNIDO, 2011). In the particular case of ammonia process, that already has a section shift and CO₂ removal with 98% purity, is used to produce urea (NTEL, 2013; Luis, 2015). For instance, in 2015, CO₂ utilized to produce urea was 132.8 MtCO₂ worldwide and 0.97 MtCO₂ in Mexico; although, 1.275 MtCO₂ are required to meet the demand of urea. On the other hand, the demand of methanol in the world to be used as fuel is growing (see Supporting Information (SI) Table SI-1) and, consequently methanol capacity has been set to reach 184.4 Mt/y by 2020 (Hydrocarbon Processing, 2016), since methanol can be used as an alternative fuel to gasoline. In contrast, Armstrong and Styring (2015) analyzed that the CCS in operations uses only 26.6 Mt/ year. Therefore, the increasing demand for urea or methanol from CO₂ (Asinger, 2014), will certainly need profitable processes and contribute to reduce CO₂ concentration in the atmosphere.

In this regard, NTEL (2013) carry out study on cradle-to-gate GHG emissions for CO₂ of the process stream from ammonia production. They found a value of 1.41 kg CO_{2e}/kg CO₂ produced. In turn, Luis (2015) observed that production of CO_2 in the steam/air reforming of natural gas was 1.15-1.40 kgCO₂/kg NH₃ without including CO₂ in combustion gases. Haas and van Dijk, in Europe, (2010) estimated that around 1.5 tons of CO_2/t of NH_3 are emitted to the atmosphere during production of ammonia (NH₃) (Anderson et al., 2008). Makhlouf et al. (2015) calculated from the LCA of an ammonia plant in Algeria, yet the rest (process gas) was not taken into account. Kramer et al. (1999) reported a value of GHG emissions during the production of 1 ton of ammonia of 2.16 tCO_{2e}/t of NH₃, and Williams and Al-Ansari (2007) a value of 2.07 tCO_{2e}/t of NH₃. However, there are no evaluations with CO₂ connected or integrated to flue gases with the process stream together (AP-2CO₂) in the same plant to ammonia production "free of GHG".

1.1. Ammonia process in the Cosoleacaque Petrochemical Complex (CPC)

By design, the ammonia plant has two key sources of CO₂ emissions, one from the reformer unit and the other from the emissions of the stripper unit that removes CO₂ from the ammonia product stream. Ammonia production depends on natural gas (NG) as both as a feedstock and as a fuel. Anhydrous ammonia is synthesized by reacting hydrogen with nitrogen at a molar ratio of 3 to 1, then is compressed and cooled to $-33 \degree C (-27 \degree F)$. Nitrogen is taken from the air, while hydrogen is obtained from the catalytic steam reforming of natural gas (EPA, 2015). Six process steps are required to produce synthetic ammonia using the catalytic steam reforming method: 1) natural gas desulfurization, 2) catalytic steam reforming, 3) carbon monoxide shift, 4) carbon dioxide removal, 5) methanation and 6) ammonia synthesis. Four of these steps remove impurities such as sulfur, CO, CO₂ and water from the NG (EPA, 2015; Luis, 2015). The CPC has four ammonia plants (IV to VII) in operation, each with a production of 480,000 tons of ammonia per year (tNH₃/y) and 497,000 tCO₂/y as byproduct with 98% purity. 1783 tCO₂/d are generated in this section, with a relation of 1.4 t CO₂/t of NH₃. Currently, the CO₂ generated is employed for urea production and for the beverage industry; the rest is emitted to the atmosphere.

1.1.1. Shift & CO₂ removal section (potassium carbonate solutions)

In the final shift gas step, CO_2 is removed using potassium carbonate (PC) solutions. The CO_2 gas is sent upward through an adsorption tower countercurrent to a 30% solution of PC in water fortified with effective corrosion inhibitors. After absorbing the CO_2 , the PC solution is preheated and regenerated (carbon dioxide regenerator in a reactivating tower). This reacting tower removes CO_2 by steam stripping and then by heating (Fig. 1). The CO_2 gas (98.5 percent pure) is either vented to the atmosphere or used as chemical feedstock. The regenerated PC is pumped back to the absorber tower after being cooled in a heat exchanger and solution cooler. According to T.N.G. Borhani et al. (2015), PC solutions have been applied in more than 700 plants worldwide for CO_2 and

Download English Version:

https://daneshyari.com/en/article/5117238

Download Persian Version:

https://daneshyari.com/article/5117238

Daneshyari.com