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a b s t r a c t

This article investigates the computational efficiency of constraint handling in multi-objective evolu-
tionary optimization algorithms for water distribution systems. The methodology investigated here
encourages the co-existence and simultaneous development including crossbreeding of subpopulations
of cost-effective feasible and infeasible solutions based on Pareto dominance. This yields a boundary
search approach that also promotes diversity in the gene pool throughout the progress of the optimi-
zation by exploiting the full spectrum of non-dominated infeasible solutions. The relative effectiveness of
small and moderate population sizes with respect to the number of decision variables is investigated
also. The results reveal the optimization algorithm to be efficient, stable and robust. It found optimal and
near-optimal solutions reliably and efficiently. The real-world system based optimization problem
involved multiple variable head supply nodes, 29 fire-fighting flows, extended period simulation and
multiple demand categories including water loss. The least cost solutions found satisfied the flow and
pressure requirements consistently. The best solutions achieved indicative savings of 48.1% and 48.2%
based on the cost of the pipes in the existing network, for populations of 200 and 1000, respectively. The
population of 1000 achieved slightly better results overall.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

An effective solution method that is reliable and easy to use is
required for the optimization of water supply systems that provide
an essential service in the communities they serve worldwide.
Optimization addresses not only the capital and operating costs
along with hydraulic performance and reliability but also increas-
ingly the efficient management of energy and scarce water re-
sources and other environmental concerns (Allam et al., 2016;
Cherchi et al., 2015; Kurek and Ostfeld, 2013; Matrosov et al.,
2015; Ren et al., 2016; Wang et al., 2016).

Genetic algorithms are used frequently in the optimization of
water distribution systems. Generally, genetic algorithms require
additional case-specific and/or external procedures to solve opti-
mization problems that have constraints and the execution times
can be excessive when applied to large optimization problems
involving real-world water distribution networks with hundreds of
pipes, especially those that require extended period simulation.

This paper investigates the computational efficiency of
constraint handling in multi-objective evolutionary optimization
algorithms for water distribution systems based on the coexistence
and simultaneous development including crossbreeding of sub-
populations of cost-effective feasible and infeasible solutions that
are non-dominated. This yields a boundary search approach that
also promotes diversity in the gene pool throughout the progress of
the optimization by exploiting the full spectrum of non-dominated
infeasible solutions.

Results for a real-world network with variable-head supply
nodes, variable demands, multiple demand categories and operating
conditions including fire-fighting flows are included to illustrate the
methodology. The relative merits of small and moderate population
sizes compared to the number of decision variables were investi-
gated also. The multiobjective genetic algorithm formulation we
developed does not require any additional case-specific or external
procedures for the minimum node pressure constraints. Embedded
in the genetic algorithm, the hydraulic analysis model can simulate
realistically both feasible and infeasible solutions, with fitness
directly related to the hydraulic properties.

Many optimization models have been proposed previously
including mathematical programming approaches such as linear
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and non-linear programming with the design variables assumed to
be continuous (Alperovits and Shamir, 1977). Evolutionary algo-
rithms have gained widespread acceptance in recent years. Some
examples include genetic algorithms (Dandy et al., 1996), ant col-
ony optimization (Ostfeld and Tubaltzev, 2008), particle swarm
optimization (Montalvo et al., 2008), simulated annealing (Marques
et al., 2015), shuffled frog leaping (Eusuff and Lansey, 2003), dif-
ferential evolution (Zheng et al., 2015), harmony search (Geem,
2006) and tabu search (Cunha and Ribeiro, 2004). Genetic algo-
rithms are used extensively in the optimization of water distribu-
tion systems in areas such as pump operation scheduling (Rao and
Salomons, 2007), leakage minimization (Creaco and Pezzinga,
2015) design and rehabilitation (Bi et al., 2015), water quality
optimization (Farmani et al., 2006) and service reservoir location,
design and operation (Prasad, 2010; Siew et al., 2016).

Inspired by Darwin's theory of evolution, genetic algorithms use
natural selection as the driving force. A genetic algorithm involves a
population of individuals that are represented as chromosomes,
each consisting of a set of genes that describe a solution. Individuals
are selected from the population to create a mating pool based on
their respective fitness levels. Individuals with a higher fitness level
have a higher probability of being selected to produce offspring that
represent new solutions. A very small proportion of the offspring
will mutate after reproduction. Genetic operators consist of selec-
tion, crossover and mutation. Crossover involves the creation of
new offspring by transforming two or more individuals. Mutation
randomly changes an individual to help increase genetic diversity.
Selection drives the search towards the regions with the fittest
individuals i.e. the best solutions. Roulette wheel and tournament
selection (Goldberg and Deb, 1991) are examples of selection op-
erators. Tournaments are often preferred as the roulette wheel
operator is characterised by rapid loss of genetic diversity that may
cause premature convergence (Goldberg and Deb, 1991). An
assessment of the operators applied in evolutionary algorithms is
available in McClymont et al. (2015).

There have been many attempts to enhance genetic algorithms.
Examples include Gray coding (Dandy et al., 1996), real coding
(Vairavamoorthy and Ali, 2000), integer coding (Barlow and
Tanyimboh, 2014), creeping or adjacency mutation (Barlow and
Tanyimboh, 2014; Dandy et al., 1996), variable mutation rate
(Kadu et al., 2008) and the mapping of redundant binary codes to
closed pipes (Saleh and Tanyimboh, 2014). Referring to the above-
mentioned schemes, the candidate solutions in a genetic algo-
rithm may be represented in different ways. Binary coding is a
common scheme where problem variables are represented by bit
combinations of 0s and 1s. Gray coding is similar to binary coding,
but differs in that only a single bit changes in the representation of
adjacent values of the decision variables. In real and integer coding,
genes are represented as real numbers and integers, respectively.

A simulation model helps ascertain the fitness of every indi-
vidual in the population of solutions. Vairavamoorthy and Ali
(2000) used a regression model that approximates the hydraulic
properties. Vairavamoorthy and Ali (2005) and Kadu et al. (2008)
used solution space reduction methods that limit the scope of the
search, to reduce the execution times of the algorithms. Also, par-
allel algorithms have been used to improve the execution times in
examples such as Balla and Lingireddy (2000) for model calibration,
Ewald et al. (2008) for the location of booster chlorination stations
and Barlow and Tanyimboh (2014) for pipe sizing.

Constraints in the optimization problems are often addressed
using penalty functions based on the severity of constraint viola-
tion, as in Kougias and Theodossiou (2013), for example. Many re-
searchers have attempted to address the difficulties associated with
penalty functions (Dridi et al., 2008). For example, Khu and
Keedwell (2005) considered node pressure constraints as

additional objectives. Prasad (2010) used a constraint dominance
tournament (Deb et al., 2002). Wu and Simpson (2002) developed a
self-adaptive penaltymethod. Farmani et al. (2005) proposed a self-
adaptive fitness procedure that does not require parameter cali-
bration. Saleh and Tanyimboh (2013, 2014) developed a penalty-
free approach for joint topology and pipe size optimization.

The optimization of real-world water distribution systems in-
volves multiple objectives that tend to be in conflict, e.g. mini-
mizing capital and operating costs whilst simultaneously
maximizing hydraulic performance and reliability. A multi-
objective optimization approach is suitable for such problems as
it produces a set of non-dominated solutions that are equal in rank.
Such solutions are said to be Pareto-optimal as it is not possible to
improve the solutions in any objective without making at least one
of the other objectives worse. Pareto-optimal solutions are practical
as they offer flexibility, since the final choice of the decision maker
is a trade-off.

Evolutionary optimization approaches such as genetic algo-
rithms are suited to multiobjective optimization problems (Konak
et al., 2006). Strength Pareto Evolutionary Algorithm (Zitzler and
Thiele, 1998), Nondominated Sorting Genetic Algorithm II (Deb
et al., 2002) and Pareto Archived Evolution Strategy (Knowles and
Corne, 2000) are some of the common multiobjective evolu-
tionary algorithms. Elitism is one of the key factors for successful
application of multiobjective evolutionary algorithms that helps to
prevent the loss of good solutions and achieve better convergence
(Bekele and Nicklow, 2005; Kollat and Reed, 2006; Zitzler et al.,
2000). The Nondominated Sorting Genetic Algorithm NSGA II is
popular due to its efficient nondominated sorting procedure and
strong global elitism that preserves all elites from both the parent
and child populations.

An additional advantage of NSGA II is that it requires few user-
specified parameters (Dridi et al., 2008). Its use in the optimiza-
tion of water distribution systems is widespread. For example,
Farmani et al. (2006) optimised the design and operation of a
network that included pump scheduling and tank location and
design. Jayaram and Srinivasan (2008) optimised design and
rehabilitation based on whole-life costing. Jeong and Abraham
(2006) optimised operational response strategy to mitigate the
consequences of deliberate attacks. Preis and Ostfeld (2008) and
Weickgenannt et al. (2010) optimised sensor placement for
contamination detection. Nicolini et al. (2011) optimised leakage
management. Additional applications of NSGA II in water distri-
bution systems include Saleh and Tanyimboh (2013, 2014) who
optimised topology and pipe sizing and Zheng and Zecchin (2014)
who investigated a two-stage optimization approach.

Furthermore, evolutionary algorithms can potentially locate the
neighbourhood that has the global optimum in the solution space
while local search methods can find local optima more rapidly. For
example, Haghighi et al. (2011) incorporated integer linear pro-
gramming while Barlow and Tanyimboh (2014) included local
search and cultural improvement operators. Wang et al. (2015)
have compared the performance of two hybrid search procedures
to NSGA II while other algorithms investigated previously include
ParEGO, LEMMO and PESA-II (di Pierro et al., 2009).

This article investigates the computational efficiency of
constraint handling in multiobjective evolutionary optimization
algorithms for water distribution systems based on the co-
existence and simultaneous development including crossbreeding
of subpopulations of cost-effective feasible and infeasible solutions
that are non-dominated. This yields a practical boundary search
approach that also promotes diversity in the gene pool throughout
the progress of the optimization by exploiting the full spectrum of
non-dominated infeasible solutions. The results revealed insights
on the relative merits of small and moderate population sizes
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