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Development and evaluation of a comprehensive drought index
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a b s t r a c t

Droughts are known as the world's costliest natural disasters impacting a variety of sectors. Despite their
wide range of impacts, no universal drought definition has been defined. The goal of this study is to
define a universal drought index that considers drought impacts on meteorological, agricultural, hy-
drological, and stream health categories. Additionally, predictive drought models are developed to
capture both categorical (meteorological, hydrological, and agricultural) and overall impacts of drought.
In order to achieve these goals, thirteen commonly used drought indices were aggregated to develop a
universal drought index named MASH. The thirteen drought indices consist of four drought indices from
each meteorological, hydrological, and agricultural categories, and one from the stream health category.
Cluster analysis was performed to find the three closest indices in each category. Then the closest
drought indices were averaged in each category to create the categorical drought score. Finally, the
categorical drought scores were simply averaged to develop the MASH drought index. In order to develop
predictive drought models for each category and MASH, the ReliefF algorithm was used to rank 90
variables and select the best variable set. Using the best variable set, the adaptive neuro-fuzzy inference
system (ANFIS) was used to develop drought predictive models and their accuracy was examined using
the 10-fold cross validation technique. The models' predictabilities ranged from R2 ¼ 0.75 for MASH to
R2 ¼ 0.98 for the hydrological drought model. The results of this study can help managers to better
position resources to cope with drought by reducing drought impacts on different sectors.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Droughts are common and recurring phenomena affecting
many sectors such as agriculture, water supply, economic, social,
and ecosystems (Heim, 2002). Droughts' impacts on these sectors
make it difficult to develop a universal/all-embracing definition of
drought, since each sector measures drought differently
(Whitmore, 2000; Heim, 2002). Drought definitions are generally
categorized into meteorological, agricultural, hydrological, socio-
economic, and stream health (AMS, 1997; Heim, 2002; Esfahanian
et al., 2016). Meteorological drought is generally defined as a
period of precipitation deficiency (several months or years)
compared to a long term average (Whitmore, 2000; Heim, 2002;
Mishra and Singh, 2010; Sheffield and Wood, 2012). The impacts
of meteorological drought are a reduction in infiltration, runoff,

deep percolation, and ground water recharge (NDMC, 2016). Agri-
cultural drought is defined as a period of soil moisture deficiency
resulting from precipitation shortage for a short period of time (few
weeks duration) (Heim, 2002; Sheffield and Wood, 2012). The
impacts of agricultural drought are a reduction in crop biomass and
yield, and plant growth (Heim, 2002; NDMC, 2016). Hydrological
drought is defined as a period of deficiency in water supply due to
prolong precipitation shortage (Heim, 2002). The impacts of hy-
drological drought are a significant reduction in streamflow,
groundwater, reservoir, and lake levels (Whitmore, 2000; Heim,
2002; NDMC, 2016). The concept of socioeconomic drought,
which is not the subject of this study, is based on the impacts of
meteorological, agricultural, and hydrological droughts on the
supply and demand of some economic goods (Heim, 2002; NDMC,
2016). Finally, stream health drought is defined as a period of
deficiency in streamflow causing irreversible impacts on aquatic
ecosystems (Esfahanian et al., 2016).

Several drought indices have been developed to monitor and
quantify drought. Drought indices are primarily tools to investigate* Corresponding author.
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drought duration, intensity, severity, and spatial extent (Mishra and
Singh, 2010). Each drought index requires specific input parameters
in order to measure drought. Precipitation is usually used alone or
in combination with other parameters for this matter (Heim, 2002;
Mishra and Singh, 2010; Sheffield and Wood, 2012). Usually for
meteorological drought, precipitation is the primarily parameter
(Dai, 2011). For agricultural drought, soil moisture content is
commonly used with the secondary parameters of precipitation
and/or evapotranspiration (Dai, 2011). For hydrological drought,
streamflow is often used beside precipitation (Dai, 2011). Finally,
for stream health drought, index flow, stream size, and stream
temperature are used to capture fish vulnerability to drought. The
index flow is defined as the median of the summer month with the
lowest daily flowrate for the given period (Hamilton and Seelbach,
2011; Esfahanian et al., 2016).

However, one of the biggest challenges for using these indices is
that for each drought category (e.g. meteorological, agricultural,
and hydrological), dozens of indices exist. Meanwhile, each drought
index requires different input parameters and uses a unique
method to measure drought severity. Measuring the drought
severity level (e.g. metrological) while using different methods has
resulted in a wide range of responses or even contradictory con-
clusions. Therefore, there is need to introduce a collective under-
standing of categorical drought conditions, since no single index
was universally accepted as the best practice in each category.

Despite the current progress in understanding the science
behind droughts, there is still a need to improve drought moni-
toring methods, which will ultimately improve drought prepara-
tion and management practices, and reduce drought vulnerability
on different sectors (Svoboda et al., 2002). This can only be ach-
ieved if one considers both categorical and overall impacts of
drought, since focusing on one aspect can have unintended con-
sequences on other aspects of drought. For example, a goal of a
commodity stakeholder group is to develop a mitigation strategy to
address drought impacts on agriculture. One solution is to use
additional water from surface and ground water resources; how-
ever, this solution unintentionally worsens the impacts of drought
on stream health. Therefore, a comprehensive approach to address
drought problems can only be achieved if categorical and overall
impacts of drought are well understood. Under this circumstance,
resources can be allocated in a way that solves a categorical impact
of drought while minimizing the negative impacts to other drought
categories or improve the overall drought condition. Therefore, it
was suggested that drought monitoring techniques can be
improved by combining the existing indices to better capture the
overall impacts of drought (Zargar et al., 2011). In general, the
methods used for combining drought indices can be classified as: 1)
decision matrix analysis (Svoboda et al., 2002; Balint et al., 2011;
Ziese et al., 2014); 2) classification and regression tree (CART)
analysis (Tadesse and Wardlow, 2007; Brown et al., 2008); and 3)
regression technique (Keyantash and Dracup, 2004; Karamouz
et al., 2009).

In the decision matrix analysis, multiple criteria are first iden-
tified to guide the final outcome. This technique was used by
Svoboda et al. (2002) to create the Drought Monitor, which is a
composite of meteorological drought indices (such as Palmer
Drought Severity Index and Standardized Precipitation Index), and
hydrologic and remote sensing information. The relationship be-
tween the DroughtMonitor components and drought severity were
defined using the decision matrix analysis (Svoboda et al., 2002).
Additionally, the Combined Drought Index (CDI) was introduced by
Balint et al. (2011), which is the combination of the Precipitation
Drought Index (PDI), Temperature Drought Index (TDI), and Vege-
tation Drought Index (VDI). The weighted average of the PDI, TDI,
and VDI indices were used to compute the CDI. The assignedweight

for the PDI was 50% and 25% weight was assigned for each TDI and
VDI indices (Balint et al., 2011). Ziese et al. (2014) developed the
Global Precipitation Climatology Center Drought Index (GPCC-DI)
with 1� grid spatial resolution, which is a combination of the
Modified Standardized Precipitation Index (SPI-DWD) and Stan-
dardized Precipitation Evapotranspiration Index (SPEI). The GPCC-
DI is calculated by taking the average of SPI-DWD and SPEI
indices for each grid cell (Ziese et al., 2014).

The CARTanalysis is a tree-building technique, which constructs
a set of decision rules to build predictive models. This technique
was used by Tadesse and Wardlow (2007) to develop the Vegeta-
tion Outlook (VegOut) to predict future vegetation conditions. In
this tool meteorological drought indices (Standardized Precipita-
tion Index and Palmer Drought Severity Index), oceanic indices
(such as Southern Oscillation Index, and Multivariate El Ni~no and
Southern Oscillation Index), and satellite and biophysical data were
combined using a rule-based regression tree method. A year later,
Brown et al. (2008) introduced a new index named Vegetation
Drought Response Index (VegDRI) based on the CART concept. In
this index, meteorological drought indices (Standardized Precipi-
tation Index and Palmer Drought Severity Index), satellite-based
vegetation measures, and biophysical information (such as land
cover and available soil water capacity) were combined using CART
analysis in order to develop the VegDRI empirical models for
different seasons.

The regression technique estimates the linear and nonlinear
behavior between the dependent and independent variables. This
technique was used by Keyantash and Dracup (2004) to develop an
Aggregate Drought Index (ADI) that considers meteorological, hy-
drological, and agricultural categories of drought. In this index, six
hydrologic variables including precipitation, streamflow, reservoir
storage, evapotranspiration, soil moisture, and snow water content
were aggregated using principle component analysis (Keyantash
and Dracup, 2004). In addition, the Hybrid Drought Index (HDI)
was developed by Karamouz et al. (2009) using this technique. This
index is a combination of the Standardized Precipitation Index, the
Palmer Drought Severity Index, and the SurfaceWater Supply Index
(Karamouz et al., 2009). An artificial neural network technique was
used to predict the HDI based on the three drought indices
(Karamouz et al., 2009).

Given the lack of a universal drought definition in monitoring
drought, the goal of this study is to introduce a universal drought
definition that considers several aspects of drought including
meteorological, agricultural, hydrological, and stream health. This
universal definition can improve drought monitoring, which can
help decision makers to better allocate the resources to reduce
drought impacts on different sectors. The objectives of this study
are to: (1) define categorical drought indices (meteorological,
agricultural, and hydrological) based on commonly used drought
indices; (2) define a universal definition of drought by combining
the categorical scores; (3) select the best variable sets to construct
predictive drought models; (4) develop predictive drought models
for each drought category and the universal drought index.

2. Materials and methodology

2.1. Study area

The Saginaw River Watershed is the largest watershed in
Michigan, and is located in the eastern part of central Michigan
(Fig.1). Thewatershed has a total area of 16,122 km2 and drains into
Lake Huron. There are 145 subbasins in the Saginaw River Water-
shed, with the majority of them being warmwater streams. From
the meteorological standpoint, Saginaw River Watershed has an
average annual precipitation of 816 mm (Fig. S1), and an average
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