
Using design patterns in object-oriented finite element programming

B.C.P. Heng, R.I. Mackie *

Civil Engineering, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom

a r t i c l e i n f o

Article history:
Received 5 October 2006
Accepted 29 April 2008
Available online 11 June 2008

Keywords:
Design patterns
Object-oriented
Finite element method

a b s t r a c t

This paper proposes the use of design patterns to capture best practices in object-oriented finite element
programming. Five basic design patterns are presented. In Model-Analysis separation, analysis-related
classes are separated from those related to finite element modelling. Model-UI separation separates
responsibilities related to the user interface from model classes. Modular Element uses object composition
to reduce duplication in element type classes while avoiding the problems associated with class inheri-
tance. Composite Element lets clients handle substructures and elements uniformly. Decomposing the
analysis subsystem as in Modular Analyzer increases reuse and flexibility. Alternative solutions to each
pattern are also reviewed.

� 2008 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

The first object-oriented (O-O) implementations of the finite
element method were put forward more than 15 years ago. Since
that time, numerous approaches have been proposed. The design
of an O-O finite element program is affected by a number of factors,
including software requirements, language features, executing
environment, etc. The developer’s methodology and viewpoint
are also important factors. Varying degrees of object orientation
– even procedural design – can be accomplished using an O-O
language.

Given such a variety of factors, it is not surprising to find differ-
ences in program design. On the other hand, there are similarities
too. These similarities are instructive because they reflect consen-
sus among researchers. As this field of research continues to ma-
ture, best practices in program design will begin to emerge. It
would be useful to capture the key features of these practices in
a language-independent and reusable format. Design patterns are
a means of achieving this goal.

Software design patterns were popularised by Gamma et al. [1].
A design pattern is the abstraction of a recurring solution to a de-
sign problem. It captures the relationships between objects partic-
ipating in the solution and describes their collaborations. By
facilitating reuse of proven solutions, design patterns help to im-
prove software quality and reduce development time. In addition,
pattern names form a vocabulary that allows developers to com-
municate their designs effectively.

Gamma et al. [1] documented 23 general design patterns that
have since become popular among O-O developers. Liu et al. [2]
and Fenves et al. [3] explicitly used some of these patterns in their

finite element systems. However, there are problems with using
general design patterns. It still requires much time and effort to
identify the specific areas in which these patterns may be used.
Furthermore, scientific software developers may not be familiar
with them. There is a need therefore to discover and document
patterns that are specific to finite element programming.

A documentation of the patterns of O-O finite element software
could serve as a common knowledge base for researchers and soft-
ware developers in this field. It also represents a step towards uni-
fying the different approaches to program design. A common base
architecture in turn facilitates collaboration and reuse among
development teams.

This paper will use design patterns to identify best practice in
object-oriented finite element program design. The next section
will describe the methodology used and how design patterns work.
The methodology is then applied to five design patterns. The paper
closes with conclusions drawn from the work.

Most object-oriented work in finite element analysis has been
implemented in C++. However, Java has also been used by some
[4], as has C# [5]. The work described here has been developed
within a C# context, but is generally applicable to object-oriented
programming in any language.

2. Methodology

A three-phase approach was adopted in this work. The first
phase involved finding similarities among O-O finite element
implementations in the literature. Differences in programming lan-
guage and presentation format made it difficult to compare pro-
gram designs. It was necessary therefore to translate designs into
a common graphical language. The Unified Modelling Language
(UML) [6] – the de facto standard for O-O modelling – was chosen

0045-7949/$ - see front matter � 2008 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruc.2008.04.016

* Corresponding author. Tel.: +44 1382 384702; fax: +44 1382 384816.
E-mail address: r.i.mackie@dundee.ac.uk (R.I. Mackie).

Computers and Structures 87 (2009) 952–961

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

mailto:r.i.mackie@dundee.ac.uk
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


for this purpose. Using the UML, the essential features of an O-O fi-
nite element system can be described in a succinct and language-
independent format. This makes it easier to spot recurring solu-
tions in design.

The recurrence of a design solution does not itself prove that the
solution is a good one. Moreover, there could be many repeating
solutions for the same design problem. To establish best practices,
the similarities discovered in the first phase were evaluated based
on the criteria of flexibility and maintainability. These two criteria
are particularly important because they are often touted as bene-
fits of O-O programming. Sometimes, flexibility and maintainabil-
ity represent opposing forces. A system designed for maximum
flexibility may be more complex and therefore less maintainable.
The goal is to balance these forces for better software quality on
the whole.

In the final phase, the adopted design patterns were imple-
mented in a finite element program first developed by the second
author [7]. In this way, the patterns – which represent a synthesis
of previous disparate research – could be tested as to their compat-
ibility. This practical work also helped in understanding the forces
shaping each pattern and the pattern’s benefits and drawbacks.
The insight gained during implementation proved useful in the
documenting of the design patterns.

The documentation format follows broadly that used in [1]. The
section heading names the pattern under consideration. The name
of a pattern hints at its structure and is a useful communication
aid. The purpose of the pattern is summarized under Intent. Moti-
vation describes the context in which the pattern may be applied
and the problems addressed. It also reviews alternative solutions
in the literature.

The next section explains the proposed Solution with its ratio-
nale and underlying principles. The associations between partici-
pating classes are described under Structure. If necessary, object
interactions are described under Collaborations. The UML is used
in these two sections to illustrate the design. The benefits and
drawbacks of applying the pattern are enumerated under Conse-
quences. Implementation highlights implementation issues such as
working with a particular language and potential pitfalls. Selected
examples of the pattern in the literature are referred to under
Known Uses. Finally, Related Patterns points the user to other pat-
terns that may be part of the pattern under consideration.

3. Catalogue of design patterns

3.1. Model-Analysis separation

3.1.1. Intent
Decompose a finite element program into model and analysis

subsystems.

3.1.2. Motivation
Earlier efforts in O-O finite element programming focused on

defining model classes such as elements, nodes, boundary condi-
tions, and materials. Little attention was paid to analysis-related
tasks. Indeed, there was often no clear distinction between analy-
sis-related code and model classes [8–10]. Without an appropriate
scheme of organization, a finite element system can quickly be-
come too large and complicated to maintain efficiently.

3.1.3. Solution
There are essentially two stages in finite element analysis. The

first stage involves modelling the problem domain. The second
stage involves analyzing the finite element model. It is natural
therefore to decompose a finite element program into two major
subsystems, one for modelling and the other for analysis. Model

classes represent finite element entities such as elements, nodes,
and degrees-of-freedom. The analysis subsystem is responsible
for forming and solving the system of equations. The two subsys-
tems should be loosely coupled. This means minimizing dependen-
cies across subsystem boundaries.

Logically, analysis objects operate on model objects. Making the
analysis subsystem dependent on the model subsystem is there-
fore a reasonable representation. This is also a more maintainable
and flexible design. A stable subsystem should not be made depen-
dent on a subsystem that needs to be flexible because that would
make the latter rigid. The analysis subsystem should be amenable
to changes and extensions. Model classes on the other hand are rel-
atively stable. The analysis subsystem should therefore be depen-
dent on the model subsystem.

3.1.4. Structure
Fig. 1 shows the three packages participating in this pattern and

their dependencies. The Fe package contains model classes, while
the CalcCon and Solvers packages together form the analysis
subsystem. CalcCon classes represent different types of analysis.
The Solvers package consists of mathematical classes for solving
system equations. There is no coupling between Solvers and Fe.

3.1.5. Consequences
The following benefits may be obtained from applying this

pattern:

(a) Decomposing an O-O finite element system into model and
analysis subsystems helps clarify the system design. The
clear division of responsibilities makes both maintenance
and subsequent extensions of the system easier.

(b) Minimizing dependencies across subsystem boundaries
reduces coupling and helps restrict the propagation of
changes from one subsystem to another.

(c) Making the analysis subsystem dependent on the model
subsystem allows the former to be changed and added to
with little impact on the latter.

3.1.6. Implementation
The following are issues that should be considered in imple-

menting the pattern:

(a) Some O-O languages – including C++, C#, and Java – facili-
tate the grouping of classes into logical namespaces. The
classes in a namespace are typically packaged into the same
physical assembly. Model and analysis classes should be

Fig. 1. Packages in the Model-Analysis separation pattern.

B.C.P. Heng, R.I. Mackie / Computers and Structures 87 (2009) 952–961 953



Download English Version:

https://daneshyari.com/en/article/511747

Download Persian Version:

https://daneshyari.com/article/511747

Daneshyari.com

https://daneshyari.com/en/article/511747
https://daneshyari.com/article/511747
https://daneshyari.com

