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While it is well known that ignoring spatial dependence often results in misspecification of models, travel de-
mand models almost never account for this phenomenon. The aim of this paper is to empirically demonstrate
the importance of accounting for potential spatial dependence between observations in the specification of spa-
tial interactionmodels. As a case study, we analyze travel flows on the public transport system in an urban region
in the Netherlands. We develop five distinct spatial interaction models (SIMs) of increasing complexity, each
encompassing a lower and upper level model. At the lower level, the attractiveness of neighborhoods for
boarding and alighting is modeled based on spatial and transit supply characteristics. At the upper level, spatial
interactions among zones are modeled taking into account competing origins, competing destinations as well as
network characteristics. We systematically comparemore traditional SIM formulationswith a SIM that explicitly
accounts for spatial and network autocorrelation. The results show a substantial difference between the former
models and the latter, in terms of the estimated total marginal impacts of the different variables and the pattern
of the error terms. The results of our study underscore that the failure to incorporate autocorrelation effects in
travel models is likely to influence model outcomes, which in turn may have profound implications for the
very design of public transport networks in cities and regions.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

The aimof this paper is to demonstrate the importance of accounting
for potential spatial dependence between observations in the specifica-
tion of spatial interaction models. As a case study, we analyze public
transport travel flows in an urban region in the Netherlands.

Spatial interaction modeling (SIM) is an approach to explore, ana-
lyze and explain flows of people, goods or information over space. It
has been used frequently to model migration flows, freight transport
flows, tradeflows, and thedistribution of telephone calls. The advantage
of spatial interaction models is that these models can take into account
the influence of both spatial characteristics and characteristics of the
transport network simultaneously.

Spatial interaction models always form a core component of travel
demand models, which are routinely employed around the world as
part of the transport planning process (e.g., Bates, 2000). In traditional
models, travel demand is forecasted in a four-step process: trip

generation, trip distribution, mode choice, and trip assignment. In the
second step of these models, the data on trip production and attraction
per zone generated in the first step (trip generation) are recombined
into trips between origins and destinations, based on the attractiveness
of zones and travel impedance between them. In most cases, a SIM is
used to execute this step.

The trip distribution step of these travel demand models almost
never account for the potential spatial dependence of travel flows,
even though it is well known that ignoring this phenomenon often
results in misspecification of models, resulting in flawed predictions
(LeSage & Pace, 2008). Over the past decades,more advanced spatial in-
teraction models have been developed which do account for spatial de-
pendence (Anselin, 2010). Recently, these models have successfully
been applied in studies on patent citation distributions (Fischer and
Griffith, 2008), migration flows (LeSage and Pace, 2008), and commod-
ity flows (Chun et al., 2012). To the best of our knowledge, these
advanced models have not yet been applied to study traffic flows or in-
corporated in transport models. This is problematic, especially because
transport models are employed around the world to justify often very
capital intensive transport investments. Against this background, the
goal of this paper is to demonstrate the importance of accounting for
spatial interdependence in the specification of transport models. For
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this purpose, we will analyze the flows of public transport trips in the
Arnhem-Nijmegen region, the Netherlands.

The paper is structured as follows. Following this introduction, we
will briefly discuss the importance of taking spatial autocorrelation
into account in (transport) models on spatial interactions (Section 2).
In Section 3, we discuss previous applications of SIMs of transit
flows. After this, we specify our models used to analyze transit flows
(Section 4). In Section 5, we provide a description of the data for our
case study. The modeling results are presented in Section 6. Section 7
gives the conclusions and discusses the implications of the findings.

2. Spatial autocorrelation

Since travel flows are a particular form of spatial interaction, trans-
port models always contain some type of spatial interaction model.
Conventional four-step transport models have a submodel related to
trip distribution describing the interactions between origins and desti-
nations (Ortuzar and Willumsen, 2001). In the estimation of the distri-
bution function it is assumed that the errors in these models are
independent among the zones. Note that errors in destination choice
models of the logit-type are often assumed to be independent as well,
yielding similar problems as discussed in the remainder of this paper
(Ben-Akiva and Lerman, 1985). In this paper such models are outside
the scope, since we do not have disaggregated data available. The gen-
eralized spatially correlated logit model (SCL) proposed by Bhat and
Guo (2004) constitutes a generalized extreme value (GEV) based
formulation of the phenomenon of interest in this paper, in case disag-
gregate data are available. In this model spatial interactions are an im-
portant component.

Measurement error occurs when the location of a variable or the
value of a variable are observed with imperfect accuracy. The main
problem is that the geometric and graphical representation of the
location of points, lines or areal boundaries (i.e., a map), gives an imper-
fect impression of the uncertainty associated with errors in their
measurement.

Other spatial errors of measurement have to do with the imperfect
way in which data on socio-economic phenomena are recorded and
grouped in spatial units of observation (e.g. types of administrative
units/zones). This interdependence of location and value in spatial
data leads to distinctively spatial characteristics of the errors. These
are the common phenomena of spatial dependence and spatial
heterogeneity:

• Dependence ismostly due to the existence of spatial spillovers, as a re-
sult of a miss-match between the scale of the spatial unit of observa-
tion and the phenomenon of interest (e.g., continuous processes
represented as points, or processes extending beyond the boundaries
of administrative regions).

• Heterogeneity is due to structural differences between locations
and leads to different error distributions (e.g., differences in accuracy
of census counts between low-income and high-income
neighborhoods).

It is well known that many (transport) models [aiming to capture
spatial interaction] actually do not take into account the possible spatial
dependence between errors. As a result, such models lead to
misspecification, since the independence assumption regarding errors
is violated (see for example Bolduc et al., 1992, 1989; LeSage and Pace,
2008). The failure to take spatial autocorrelation into account may be
due to the high complexity of spatial interactionmodels that do address
this phenomenon. The higher complexity of models employing spatial
data compared to time-series data is the result of the fact that, unlike
time-series, spatial autocorrelation is multidirectional. An observation
of an attribute at one location can be correlated with the value of the
same attribute at any different location, and vice versa.

The importance of accounting for spatial dependence obviously de-
pends on the actual strength of the unobserved spatial relationships.
More specifically, the size of the bias in models estimating trips or
flows depends on the size of the correlation between the error terms
and the number of trips. In case these correlations are positive, the pa-
rameters in the spatial interaction models will be overestimated.

3. SIMs of transit flows

Although a SIM is generally used formodeling the trip distribution in
traditional four-step travel demand models, it has rarely been used to
analyze and explain transit flows explicitly. A reason for this might be
the fact that, until recently, little reliable and detailed data on transit
passenger flows was available. New data sources are coming rapidly
available in recent years, especially due to technological developments.
This increasing availability of ‘big’ data is both an opportunity and a
challenge for spatial and regional studies (Arribas-Bel, 2014; Kitchin,
2013; Rae and Singleton, 2015). Also in transport research, new data
sources are increasingly available and used (Yue et al., 2014). Especially
the number of data collection techniques that can capture personal trip
trajectories have increased tremendously. Examples of these are GPS
trackers, mobile phones, and transit smart cards. In addition to tradi-
tional data sources such as paper interviews, travel diaries, and stated
preference data, these new data sources bring new opportunities, as
they givemore complete and detailed information about travel patterns
(Tao et al., 2014). We build on these possibilities, by using smart card
data of all bus boardings and alightings to estimate SIMs for transit
passenger flows.

Only a very limited number of studies are available that have con-
structed SIMs for public transport travel flows. Goh et al. (2012) and
Smith et al. (2012) successfully estimate SIMs for the London rail net-
work and the Seoul Metropolitan Subway system, respectively. Goh et
al. (2014) applied a modified gravity model to the passenger flows in
the Seoul bus system. They found that the geographical environment
had a far larger influence on the usage of the bus system than it had
on the subway system. These studies, however, were mainly motivated
by analyzing social phenomena and social networks exemplified by the
transit passenger flows. As such, they do not provide many insights in
how different aspects of transit supply and spatial characteristics influ-
ence passenger flows. Moreover, none of these models considered the
possible influence of spatial dependence in their modeling approaches.

In the current study, we extend these efforts in a number of ways in
order to estimate amore realistic SIMof transit passenger flows, explor-
ing the influence of both spatial and network characteristics at different
spatial scales on transit travel flows. Firstly, we model transit flows as a
multilevel phenomenon. At the lower level, boardings and alightings are
modeled as a function of spatial characteristics and transit supply
characteristics at the neighborhood level. This includes population char-
acteristics, densities, employment, transit frequency, transfer options,
and bus stop characteristics. At the upper level we model spatial inter-
actions among zones using spatial as well as network characteristics.
At this level, we also take spatial competition into account.

Secondly, in our model we explicitly take spatial dependence into
account by including spatial and network autocorrelation. We will
explore a number of formulations capturing these effects. First, we
correct for spatial autocorrelation in the lower level (boardings)
model by including information about adjacent neighborhoods in a spa-
tial autoregressive model. Second, at the upper level model (flows), we
correct for potential network autocorrelation accounting for the influ-
ence flows may have on flows on related OD-pairs. The exact, formal
specification of the SIMs is described in the following section.

Note that our SIMs,while accounting formultiple types of autocorre-
lation, are still static in nature. That is, ourmodels aim to explain the ob-
served static pattern of transit flows, although we are of course well
aware that these flows are the result of the activity patterns of individ-
uals, which are dynamic in nature and change in space and time. In this
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