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a b s t r a c t

A nonlinear model of cable, able to twist, is formulated. For small sag-to-length ratios (e.g. 1/10) and
technical parameter values proper to electrical transmission lines, the motion is ruled by the classical
equations of the perfectly flexible cable, plus a further equation governing the twist evolution. A two
degree-of-freedom system is successively obtained via a Galerkin procedure. The relevant nonlinear
ODE’s are dealt with a Multiple Scale approach, under 2:1 internal resonance condition and no resonance
conditions, in order to investigate Hopf bifurcations and post-critical behaviors. All the numerical results
are compared with those furnished by the flexible model, and the influence of twist is discussed.

� 2008 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the aerodynamic forces acting on a non-
circular rigid cylinder, subjected to a wind flow, depend, besides
on the mean wind velocity, on the exposure to the flow of the
body, that is on the attitude of the cylinder cross-section. When
an elastic beam is analyzed in the framework of the quasi-steady
theory of the aerodynamic forces, the loads are usually evaluated
referring to the initial attitude of the section (see [1]), and rota-
tions taken into account only to determine, in an approximate
manner (see [2]), the fluid to structure relative velocity. A more
refined analysis, however, is possible, in which the time-depen-
dent actual attitude of the cross-section is considered, as de-
scribed by the so-called twist angle (i.e. by the rotation of the
section around its normal axis). In contrast, when a pretensioned
string is studied, such an angle is usually not included among the
kinematic descriptors of the body, since all the rotations are
believed to be unimportant in capturing the main structural
behavior. Therefore, a model of perfectly flexible string is adopted
(one-dimensional not polar continuum), and the aerodynamic
forces evaluated with reference to the initial attitude of the sec-
tion, which is assumed to remain immutable in time. The prob-
lem is made even more complicated when a sagged cable is
considered. Indeed, due to the steady part of the aerodynamic
forces and to the high flexibility of the structure, the cable signif-
icantly changes its equilibrium configuration and, therefore, its

exposure to the flow. Hence, in addition to a dynamic rotation,
a static velocity-dependent rotation of the section must be con-
sidered in evaluating the aerodynamic forces.

The aeroelastic instability of sagged cables has been widely
studied in the literature. Luongo and Piccardo [3] have studied
the nonlinear galloping of cables in 2:1 internal resonance condi-
tion, by using a perfectly flexible cable model [4,5] and account-
ing for the static rotation only. In a successive work [6], they have
tentatively corrected the classical cable model to account for the
twist, by using a quite simplified model. Yu et al. [7], McConnel
and Chang [8], White et al. [9] have employed a model of
cable-beam, accounting for twisting but not for bending, and
neglecting the cable initial curvature in defining the torsion
strain. In contrast, they have considered a realistically coupled
extension–torsion constitutive law, based on experimental re-
sults. Recently, Luongo et al. [10], have formulated a consistent
linear model of cable-beam accounting for the (small) curvature
of the cable, as well as for bending and torsional stiffness. By
retaining only the leading terms in each equations, they obtained
linear reduced equations, amenable to an analytical solution,
identical to that of the perfectly flexible model, plus an additional
equation accounting for both bending and torcent moments. The
model permitted to detect the influence of the dynamic twist on
the critical wind velocity.

In this paper, the model presented in [10] is reformulated in the
nonlinear range and nonlinear, reduced equations are derived
along the same lines. These equations are obviously a particular
case of more complete models, as, for example, that of Lu and Per-
kins [11]; these models, however, are composed by very complex
equations and suffer of some numerical problems related to the
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existence of boundary layers, caused by the smallness of the flex-
ural terms (nearly-singular equations). A simple two-degree-of-
freedom nonlinear system is then derived from the continuous
model via a Galerkin procedure, and the critical and post-critical
aeroelastic behavior of the cable investigated in resonant and
non-resonant cases via a Multiple Scale perturbation approach
(see [12]). The role played by the dynamic twist is finally
highlighted.

The paper is organized as follows. The reduced equations of mo-
tion are formulated in Section 2. The discretization is performed in
Section 3. The perturbation analysis is carried out in Section 4,
where the amplitude modulation equations are derived. These lat-
ter are numerically studied in Section 5 for some sample systems.
Finally, some conclusions are drawn in Section 6.

2. Model

The cable is modeled as a body made of a flexible centerline and
rigid cross-sections restrained to remain orthogonal to the axis
(shear-undeformable beam). It is assumed to be uniformly iced
and loaded by a wind flow of mean velocity U ¼ Uaz, blowing hor-
izontally. Three different configurations are considered, described
in the following (Fig. 1). (a) The initial configuration C0, taken by
the body at the time t ¼ 0, under the action of its self-weight
�mgay (including the ice accretion). This configuration is planar,
and belongs to the vertical ðax; ayÞ-plane. The cable is prestressed
in C0 by an axial internal force T0ðs0Þ, depending on the (un-
stretched) abscissa s0; other internal forces (shear, bending and
torcent moments) are neglected. (b) The reference configuration C,
assumed by the body at the time t ¼ 0þ, in which static wind forces
�baðsÞ (with the stretched abscissa s ’ s0) act on the cable. Under
the simplifying hypothesis that �ba is uniform on the length of the
cable, C still lies in a plane, forming an angle u with the vertical
plane. If shear and internal moments are still neglected, equilib-
rium requires that the resultant force �b :¼ �ba �mgay lies in the
plane of the cable. By vanishing its component along the binormal
direction �a3, it follows that:

�ba3 ðu;UÞ þmg sin u ¼ 0 ð1Þ

being �ba3 ¼ �ba � �a3, ay � �a3 ¼ � sin u, and where the dependence on
the static aerodynamic force �ba3 on the configuration variable u
and on the flow velocity U has been made explicit. Eq. (1) implicitly
defines the nonlinear, non-trivial equilibrium path u ¼ uðUÞ. In this
wind-dependent reference configuration C, the cable is prestressed
by an axial internal force TðsÞ, modified with respect to C0 by the
static aerodynamic forces. Due to this circumstance, also the natural
frequencies and modes of the cable are modified. (c) The actual con-
figuration C, assumed by the cable at the time t > 0, in which the
body is loaded also by (non-uniform) dynamic wind forces
ba � �ba, depending on displacement and velocity of the cable. In this

configuration C, all the internal forces and moments are considered
to contribute to the dynamic equilibrium of the body.

The equations of motion governing the dynamics of the cable,
referred to the configuration C, are derived in the following. The
mechanical model and the aerodynamic model are formulated
separately.

2.1. Mechanical model

The reference configuration C is described by the planar curve
�x ¼ �xðsÞ and by the cross-section inertial principal triad
�b :¼ f�a1ðs; tÞ; �a2ðs; tÞ; �a3ðs; tÞg, assumed to be coincident with the
Frenet triad (Fig. 1b). Here, �a1 � �x0 is the tangent, �a2 the normal
and �a3 the binormal to the curve, the dash denoting s-differentia-
tion. Therefore, �a01 ¼ �j�a2, �a02 ¼ ��j�a1, �a03 ¼ 0, with �j ¼ �jðsÞ the cur-
vature in C.

The actual configuration of the body is described by the non-
planar curve x ¼ xðs; tÞ and the inertial principal triad b :¼
fa1ðs; tÞ; a2ðs; tÞ; a3ðs; tÞg.

The transport is described by the displacement vector field
uðs; tÞ and the rotation tensorial field Rðs; tÞ, which leads the triad
�b to match the triad b:

x ¼ �xþ u; ai ¼ R�ai; i ¼ 1;2;3: ð2Þ

The scalar representation of R, involving three elementary rotations
#i, is given in [13] and in many other papers. The shear-undeformabil-
ity constraints require that, in the actual configuration, the tangent x0

to the centerline is parallel to the normal a1 with regard to the cross-
section, namely, x0 ¼ ð1þ eÞa1, where e is the axial strain. From this
condition, the strain e and the rotations #2 and #3 are derived as func-
tions of four independent configuration variables, the three compo-
nents u, v and w of vector u on �b, and the twist angle # :¼ #1. Then,
the incremental bendings ĵ2; ĵ3 and torsion ĵ1 are introduced as inde-
pendent components on �b of the skew-symmetric tensor:bK ¼ RTR0: ð3Þ

The following strain measures, expanded up to second-order terms,
are obtained [13]:

e ¼ u0 � �jvþ 1
2
½ðv0 þ �juÞ2 þw0�;

ĵ1 ¼ #0 þ �jw0 þ �j2vw0 þw0v00 þ �j0uw0;

ĵ2 ¼ �w00 þ �j#þ ½ðu0 � �jvÞw0�0 þ #½ð�juÞ0 þ v00�;

ĵ3 ¼ v00 þ ð�juÞ0 þ #w00 � 1
2

�jð#2 þw02Þ � ½ð�juþ v0Þðu0 � �jvÞ�0:

ð4Þ

The equations of motion are derived via the extended Hamilton
principle (see, e.g. [14]):

dH :¼
Z t2

t1

Z ‘

0
fmð _ud _uþ _vd _vþ _wd _wÞ þJ1

_#d _#þ ðb1 � cu _uÞdu

þ ðb2 � cv _vÞdvþ ðb3 � cw _wÞdwþ ðc1 � c# _#Þd#þ EAede

þ GJĵ1dĵ1 þ EI2ĵ2dĵ2 þ EI3ĵ3dĵ3 � TeIIdeIIgdsdt ¼ 0
8du; dv; dw; d#; ð5Þ

where ‘ is the cable length; EA, GJ, EI2 and EI3 are the axial, torsional
and bending stiffnesses, respectively; b1, b2, b3 and c1 are the exter-
nal forces and couple densities; cu, cv, cw and c# are the structural
damping coefficients; eII is the second-order part of the axial strain,
accounting for the prestress working; m is the mass linear density
and I1 is the inertia polar moment of the section. It should be noted
that an uncoupled constitutive law among the incremental internal
forces and the incremental strains has been assumed in Eq. (5). By
substituting Eq. (4) in Eq. (5), performing the variations and inte-
grating by parts, a set of four differential equations in the indepen-
dent configuration variables is drawn. By enforcing the constraint

Fig. 1. Cable configurations: (a) initial C0 and reference C configurations; (b) actual
configuration C.
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