Journal of Transport Geography 62 (2017) 92-97

journal homepage: www.elsevier.com/locate/jtrangeo

Contents lists available at ScienceDirect

Journal of Transport Geography

Journal of
Transport
Geography

Constructing a routable retrospective transit timetable from a real-time

vehicle location feed and GTFS

Nate Wessel , Jeff Allen, Steven Farber

@ CrossMark

University of Toronto, Sidney Smith Hall, 100 St. George Street, Room 5047, Toronto M5S 3G3, Ontario, Canada

ABSTRACT

We describe a method for retroactively improving the accuracy of a General Transit Feed Specification (GTFS)
package by using a real-time vehicle location data set provided by the transit agency. Once modified, the GTFS
package contains the observed rather than the scheduled transit operations and can be used in research assessing
network performance, reliability and accessibility. We offer a case study using data from the Toronto Transit
Commission and find that substantial aggregate accessibility differences exist between scheduled and observed
services. This ‘error’ in the scheduled GTFS data may have implications for many types of measurements
commonly derived from GTFS data.

1. Introduction

Over the last ten years, the General Transit Feed Specification
(GTFS) has emerged as an industry standard for publishing data about
transit operations. Data in this format has issued from more than a
thousand transit agencies around the world and that data has been
incorporated into just as many user-facing routing applications. GTFS
data defines transit schedule information in a format that is essentially a
routable spatiotemporal network graph with stops as nodes, scheduled
travel between stops as edges, and estimated travel times as the cost.
This not only allows people to find their way from A to B, but due to the
open nature of the standard, has allowed researchers to ask interesting
questions and have them answered with a degree of accuracy and scope
that would have been impossible before GTFS. Such questions, still very
much under active research, include measures of disparities in service
provision (Farber et al., 2016; Fransen et al., 2015), temporal varia-
bility (Farber et al., 2014), the role of relative travel times and costs in
mode choice (Owen and Levinson, 2015; Salonen and Toivonen, 2013),
the degree of accessibility offered by competing transit development
plans (Farber and Grandez, 2017), and many others. Yet, such research
using GTFS is subject to a serious criticism: it is based entirely on
schedules, which are expectations about services, rather than observa-
tions of them. It is common knowledge that transit does not run pre-
cisely as scheduled, and that it often differs substantially from the
schedule. Occasionally there are major unscheduled disruptions due to
severe congestion, vehicle breakdowns, or signal malfunctions. These
disruptions are a fact of life for most transit users and well acknowl-
edged by transit agencies themselves.

” Corresponding author.
E-mail address: nate.wessel@mail.utoronto.ca (N. Wessel).

http://dx.doi.org/10.1016/j.jtrangeo.2017.04.012

Received 18 January 2017; Received in revised form 26 April 2017; Accepted 26 April 2017

Available online 09 June 2017
0966-6923/ © 2017 Elsevier Ltd. All rights reserved.

One way that agencies have acknowledged service delays and dis-
ruptions is to issue live updates to their transit schedules. While for
some smaller agencies, these take the form of hastily posted signs and
twitter notifications, for many larger operations, the effort to update
their customers has become perpetual. We refer here to the “real-time”
data sources that contain constantly updated arrival predictions as well
as live vehicle location reports based on Geographic Positioning
Systems (GPS). These algorithmically produced updates have proven
quite useful to many transit users (Brakewood et al., 2015; Tang and
Thakuriah, 2012; Watkins et al., 2011), and the automatic vehicle lo-
cation (AVL) systems that enable them have proven useful to transit
researchers who have primarily used them to assess reliability at the
level of stops or lines (e.g. El-Geneidy et al., 2011; Tribone et al., 2016)
or to propose ways for transit operators to improve reliability or pre-
diction accuracy. Yet transportation researchers have not yet to our
knowledge made use of such data to answer research questions that
involve routing across the transit network, a type of query enabled by
GTFS data.

In this paper, we propose a novel way of making this “real-time”
data available to answer precisely the same sorts of research questions
that people have already been asking of and answering with GTFS. We
do this by using it to update an existing, schedule-based GTFS package
with observed trips and arrival times, yielding a GTFS package based on
observation rather than schedule. Of course, such data cannot be used
directly for routing actual passengers since the events it describes will
already have transpired. Yet, most research questions currently an-
swered by GTFS data might be better directed not at a schedule but at a
measure of average performance which could be derived from past


http://www.sciencedirect.com/science/journal/09666923
http://www.elsevier.com/locate/jtrangeo
http://dx.doi.org/10.1016/j.jtrangeo.2017.04.012
http://dx.doi.org/10.1016/j.jtrangeo.2017.04.012
mailto:nate.wessel@mail.utoronto.ca
http://dx.doi.org/10.1016/j.jtrangeo.2017.04.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtrangeo.2017.04.012&domain=pdf

N. Wessel et al.

events, or at the events of some particular day or time in the past.

In the remainder of this paper, we will describe our method for
creating this retrospective GTFS package from GTFS and real-time data.
We will then undertake a brief case study of the Toronto Transit
Commission to illustrate the potential utility of this approach. Because
real-time data is currently not well standardized, we will have to de-
scribe our algorithm to some extent as it was designed around a par-
ticular standard - the data available from the NextBus company's API
(NextBus, 2016) which is used in Toronto and many other cities. The
code we developed is available online,' and we encourage others to use
and contribute to the project. Work to extend the code to accommodate
other real-time data standards is underway, and we will try to describe
the project here with a degree of abstraction sufficient to allow the
reader to see how the technique can be applied to any real-time data
standard.

2. Required data
Our method relies upon three data sets:

1. A current GTFS package, which will be used primarily to provide the
locations of stops and stations.

2. A real-time feed of vehicle locations which are preferably associated
with some route information.

3. A routable road and/or rail network data set including all ways used
by transit vehicles.

The method we have developed is based on the information pro-
vided by a basic GTFS package, and the real-time information provided
by the API delivered by the NextBus company, which currently serves
data for about 50 agencies around the world (NextBus, 2016). Other
real-time data formats exist, and real-time data has not yet standardized
to the same degree as schedule data; some agencies provide different
information in their feeds. We believe that our algorithm should be
generalizable to most real-time data feeds, so long as they provide ac-
curate vehicle locations and update them at a sufficient frequency.

3. Algorithm
3.1. Outline

The basic ontological units of a GTFS package are routes, trips,
blocks, and stops. Routes are sets of typical service patterns grouped
under a single name, usually a number. Trips are particular occasions
when a vehicle goes from one end of a route to the other, serving an
ordered set of stops. Blocks are sets of trips in the order of their per-
formance, operated continuously by the same vehicle.> Stops are the
locations where passengers can access a trip.

Real-time data often does not describe the transit system in the same
terms as does GTFS; it is not designed to provide a routable network,
but to give updates on particular vehicles and lines. The task of our
algorithm then must be to translate the description provided by the
real-time data into the terms/units used by GTFS. In the real-time data
provided by NextBus for example, there is no explicit concept of trips or
blocks and these must be inferred. The focus of the NextBus data is on
vehicles and stops.

Our basic approach is to monitor vehicles in real-time as their lo-
cations are updated, keeping track of where they are and when. When
we observe that a vehicle seems to have completed a trip, we process
the data associated with that trip and begin building up a new trip for
the vehicle if it is still in service. Finished trips are associated with stops
from the schedule data and stop times are derived from the timestamps

* https://github.com/SAUSy-Lab.
2 passengers can often stay on the vehicle as it transitions between trips.

93

Journal of Transport Geography 62 (2017) 92-97

of vehicles passing those stops. Next, trips are assigned to blocks and
routes and the data is stored in a database. At this point, it is
straightforward to extract the data in the text-based GTFS format. Much
of the hard work of the algorithm is in error handling and data cleaning
as reported vehicle locations are always a bit fuzzy and occasionally
spurious.

3.2. Collecting and storing the data

We developed a program in Python to collect real-time data from
the NextBus API, which is used by the Toronto Transit Commission. The
NextBus API is a publicly available web service designed to serve real-
time transit data primarily to mobile phone or web applications. One of
its functions is to report the latest locations for all operating vehicles in
the fleet, the idea being that these will be displayed to users on a mobile
web map. For each vehicle, the API returns information on the vehicle's
ID, route, heading, last known location, and the time it reported that
location to the server. Vehicles update their location every 20s on
average.

Our program requests all updated vehicle locations every 10 s to
ensure that all new data is collected and then stores the locations in a
PostGIS database along with a timestamp and the other associated in-
formation.

3.3. Delimiting trips and blocks

We assume that each vehicle reported to be in service is operating a
trip and that that trip belongs to a schedule block. Each vehicle under
observation must be assigned a unique trip id and a unique block id. A
block ends only when the vehicle goes out of service, defined as failing
to report a location for three or more minutes (or some other threshold,
as appropriate). The NextBus API did not explicitly report when a ve-
hicle was going out of service. The end of a schedule block implies the
end of any ongoing trip, but a trip may also end in a number of other
conditions. For the data available to us from NextBus, we defined these
as

1. The vehicle reporting a different route.
2. The vehicle reporting a different headsign.

Headsigns typically indicate the direction of travel, i.e. “501 E” and
a change to “501 W” implies that the terminal station has been reached
and the return trip begun in the opposite direction. With the NextBus
data, we were fortunate that the headsign and route changes were a
good indicator of trip endings. Other real-time or historical data sets
could necessitate other techniques, perhaps simpler, perhaps not, for
determining when trips are ending. For pure GPS data, it may be ne-
cessary to determine when a vehicle turns back on its route to go the
other way.

Once a trip has ended, all information associated with that trip is
pulled from the database and processed, as the rest of this section will
describe. If the vehicle is still in service, a new trip is started for that
vehicle, and new location reports begin to accumulate in the database
associated with the new trip ID.

3.4. Spatial matching and positional error handling

Visual inspection of the data provided by the NextBus API showed
normal, expected levels of GPS position error for most points, but also
some extreme errors associated with trips either starting or ending in a
bus garage, where vehicles reported positions many kilometres from the
last reported location before going out of service. The extreme errors
were easily dealt with by measuring the speed (distance/time) between
location reports. Segments over 120 km/h indicated obvious errors and
the offending points were removed accordingly. As these were almost
always associated with vehicles entering or leaving service, this was not


https://github.com/SAUSy-Lab

Download English Version:

https://daneshyari.com/en/article/5117526

Download Persian Version:

https://daneshyari.com/article/5117526

Daneshyari.com


https://daneshyari.com/en/article/5117526
https://daneshyari.com/article/5117526
https://daneshyari.com

