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a b s t r a c t

Classical time integration schemes fail in vibration analysis of complex problems with moving concen-
trated parameters. Moving mass problems and moving support problems belong to this group. Commer-
cial systems of dynamic simulations do not support such an analysis. Moreover, the classical finite
element method with the Newmark-type time integration method does not allow us to obtain conver-
gent results at all. The reason lies in the impossibility of full mathematical consideration of the time inte-
gration stage and the analysis of inertial terms of a travelling mass. Both of them, unfortunately, are
decoupled. In this paper we propose an efficient and exact numerical approach to the problem by using
the space–time finite element method. We derive characteristic matrices of the discrete element of the
string and the Bernoulli–Euler beam that carry the concentrated mass. We present four types of virtual
functions in time and we apply two of them to the practical analysis. Displacements in time obtained
numerically are compared with semi-analytical results. Almost perfect coincidence proves the efficiency
of the approach.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The paper deals with the numerical approach to the problem of
structural vibrations under a travelling inertial load. Travelling
non-inertial loads are unlikely to be solved by commercial codes.
Such problems are not implemented in most of them. Inertial loads
are not implemented in computer systems at all. Problems with
travelling masses are of special interest in engineering practice.
The influence of the mass attached locally to the structure cannot
be neglected. We can only mention here the coupling of the 500 kg
mass of the train wheel with a rail or a track. A similar case occurs
in problems concerning railway power collectors. The speed of the
rail vehicle can reach the critical value. In such a case the wave re-
sponse significantly differs from the response of massless systems.

In the paper we present an algorithm for the moving mass
analysis in the case of unidimensional structures: a string or a
bar and the Bernoulli–Euler beam. In the case of other types of
structures the approach is identical. We derive and list the matri-
ces explicitly. The resulting characteristic matrices can be directly
applied to numerical algorithms. The principle of application of the
space–time finite element method to the problem with inertial
travelling load was presented by Bajer and Dyniewicz [1] who
showed the way from the differential equation to the numerical
scheme and the step-by-step formula by use of the space–time ele-
ment method. The solution was limited to the simplest problem of
string vibrations and to the use of the Dirac delta function as a

virtual distribution of the velocity. The quality of the solution
could, however, be improved by the application of modified virtual
functions in the formulation. This paper will describe the solution
of the problem with higher accuracy formulas and apply them to
more complex structures–beams.

The classical finite element approach to the moving mass prob-
lems with the Newmark time integration method fails. The diffi-
culty lies in the methodology of the solution of the variable
coefficients differential equation with the classical time integration
method. In this case the spatial discretisation is performed at a se-
lected time point ti. Vertical acceleration is expressed in the travel-
ling point x ¼ vt. The solution is obtained by introduction of the
so-called Renaudot formula, which in fact is the chain-rule deriva-
tive of the vertical displacement. Thus the acceleration in the iner-
tial term, for x ¼ vt, results in three terms

d2uðvt; tÞ
dt2 ¼ o2uðx; tÞ
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2uðx; tÞ
ox2

�����
x¼vt

; ð1Þ

interpreted as the vertical acceleration, the Coriolis acceleration and
the centrifugal acceleration, respectively. The direct use of (1) in the
differential equation governing the motion of the continuous struc-
ture results in wrong formulas, since this mathematical step is exe-
cuted rather automatically, based on two separate mathematical
stages: construction of the time integration scheme and contribu-
tion of the moving mass term based on (1). Then characteristic
matrices, i.e. mass, damping, stiffness, etc., are established. They
are related to time ti and do not contribute properly to the influence
of terms with variable coefficients.
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A simple ad hoc mass splitting between neighbouring nodes
(Fig. 1) results in divergence as well. In some cases, especially in
beams, numerical solutions are limited, but very inaccurate. In
the case of string vibrations, governed by a purely hyperbolic dif-
ferential equation, such a strategy results in divergent solutions.
The ad hoc lumping can be applied in one particular case only:
the mass must be replaced from node to node as a whole value.
In practice, the mesh must be sized in relation to the time step
and mass velocity: Dx ¼ vDt. It makes the solutions useless. We
are sure that classical time integration methods would result in
correct formulas if they were preceded by a correctly performed
analysis. Unfortunately, up till now the authors have not been
successful.

Contrary to the classical approach, the space–time finite ele-
ment method allows us to perform consequently the solution of
the variable coefficient differential equation in time interval
ti; tiþ1½ �. The time stepping formula is derived together with the

analysis of the travelling mass vertical acceleration. This last fea-
ture requires a more complex mathematical analysis. The typical
approach to the space–time element method with a Dirac delta vir-
tual function allows us to derive characteristic matrices in the
step-by-step procedure. In this case, however, the product of Dirac
delta virtual function and the second Dirac delta function describ-
ing the concentrated moving mass must be integrated over space
and time. Although the resulting time stepping scheme is uncondi-
tionally stable with respect to the time step, the accuracy for long-
er time steps can be insufficient. Below, we consider other virtual
functions which result in relatively simple interpretation and en-
sure higher-order accuracy.

The space–time finite element approach differs from the classi-
cal finite element method. First of all, in a classical approach the
spatial and temporal discretisation are carried on separately. The
space domain of the structure is discretized, for example, by the fi-
nite element method, finite difference method, boundary element
method, etc. Time integration is performed by a difference method.
The Newmark method or a derivative method, i.e. the central dif-
ference scheme and trapezoidal rule, is usually applied at this
stage. Well-known classical methods of integration of the differen-
tial equations like Runge–Kutta methods, Adams methods and oth-
ers can also be placed in this group. A classical approach to the
vibration analysis of the structure can shortly be written by rela-
tions which describe the global (i.e. both in space and in time)
interpolation of fundamental quantities

qðx; tÞ ¼ NðxÞTðtÞqe: ð2Þ

NðxÞ is the interpolation formula applied to space, for example,
shape functions in the FEM, and TðtÞ is a time interpolation of the
nodal quantity qe ¼ qi;qiþ1

� �T in two while limiting the time inter-
val ½ti; tiþ1�. Let us examine the uncoupling of both functions. The
space–time finite element approach is described by the following
interpolation:

qðx; tÞ ¼ Nðx; tÞqe: ð3Þ

Nðx; tÞ is the matrix interpolation function defined in a space–time
subdomain (Fig. 2). We emphasise here that the form of Eq. (3) is

more general than (2) and the classical finite element approach
can be considered as a particular case of the space–time element
method. In the space–time approach a non-stationary discretisation
can also be used. In the case of a stationary mesh and in problems
without damping, one can write a pass from one approach to an-
other. Characteristic matrices, however, differ. In a general case
both approaches differ. This also occurs in the case of spatial ele-
ments carrying the travelling mass. Here the second fundamental
difference must be emphasised: the finite element approach uses
the difference schemes for time integration while the space–time
approach uses the integral formulas in formulation of the resulting
time stepping schemes.

We have said that the string solution diverges even at low
velocity range and with small ratio of the moving mass to the span
mass. In Fig. 3 the moving mass to string mass ratio was equal to
0.1 and the mass velocity was below 0.2 of the wave speed in
the string. In practice these values are relatively low. Real prob-
lems require both parameters to be even greater than one. We
should be able to simulate the following technical problems: vibra-
tions of railway tracks, vehicle passing over bridges, pantograph
collectors in railways, magnetic railways, guideways in robotic
technology, gun barrel, airfield plates, etc. In the case of a beam
or a plate, numerical solutions are usually limited, because of par-
abolic terms in the differential equation. They are, however, highly
inaccurate. Several papers deal with the discrete analysis of the
moving mass problem [2–4]. Unfortunately, the authors do not
present numerical results obtained for the inertial load. A simple
massless force or oscillator is used in their demonstration, or the-
oretical and experimental results are only compared. All of the so-
called mass forces finally are replaced by massless loads. What is
more, the analytical derivations do not consider correctly the fun-
damental inertial term
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Fig. 1. Ad hoc moving mass lumping in nodes.

Fig. 2. Space–time subdomain.
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Fig. 3. Divergence of the existing numerical solutions.
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