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a b s t r a c t 

In spatial epidemiology, data are often arrayed hierarchically. The classification of individ- 

uals into smaller units, which in turn are grouped into larger units, can induce contextual 

effects. On the other hand, a scaling effect can occur due to the aggregation of data from 

smaller units into larger units. In this paper, we propose a shared multilevel model to 

address the contextual effects. In addition, we consider a shared multiscale model to ad- 

just for both scale and contextual effects simultaneously. We also study convolution and 

independent multiscale models, which are special cases of shared multilevel and shared 

multiscale models, respectively. We compare the performance of the models by applying 

them to real and simulated data sets. We found that the shared multiscale model was the 

best model across a range of simulated and real scenarios as measured by the deviance 

information criterion (DIC) and the Watanabe Akaike information criterion (WAIC). 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In spatial epidemiology, data are often arrayed hierar- 

chically, i.e., individual level data are aggregated into areal 

units (e.g. counties) that are clustered to form larger areal 

units (e.g. states). The clustering of individuals into areal 

units, which in turn are grouped into larger areal units, can 

induce contextual effects ( Lawson, 2013 , 2016 ); meaning 

that individuals within areal units have similar character- 

istics. In general, contextual effects arise from the under- 

lying spatial distribution of the individual level outcomes. 

Appropriate model parameters should be used to adjust for 

the contextual effects and when such parameters are not 

included then bias would be induced in the estimated rel- 

ative risk, which is the parameter of interest in the disease 
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mapping. Hence, researchers considered multilevel model- 

ing of hierarchically available individual level data to en- 

compass contextual effects ( Bobashev and Anthony, 1998 ; 

Goldstein et al., 2002 ; Leyland and Goldstein, 2001 ; Merlo 

et al., 2004 ; Preisser et al., 2003 ). However, this approach 

only handles the correlation between the outcomes within 

a single areal unit; it ignores spatial correlation among 

neighboring areal units. 

Multilevel models often assume that all spatial corre- 

lation can be reduced to within area correlation ( Chaix et 

al., 2005 ); thus, there is no spatial random effect com po- 

nent that handles the correlation between the neighbor- 

ing areas. The random effects in multilevel models only ac- 

count for the correlation between the individual level out- 

comes within a given spatial unit. Therefore, it provides 

partial information on the geographical variation of health 

outcomes in measuring the correlation within a spatial 

unit but not the correlation between neighboring re- 

gions. Researchers extend multilevel models to incorporate 
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spatial interaction effects in different fields such as geogra- 

phy and spatial econometrics ( Browne et al., 2001 ; Chaix et 

al., 2005 ; Dong et al., 2015 ; Langford et al., 1999 ; Tranmer 

et al., 2014 ). In this paper, we (i) extend the multilevel 

models to account for spatial correlations between adja- 

cent areas using a convolution model developed by Besag 

et al., (1991) ; and (ii) develop models for aggregated unit 

level data by adjusting for contextual effects. The proposed 

multilevel model focuses on the risk variation at the fine 

level areal units by incorporating the contextual effects in 

the model. In addition, the estimation of the risk varia- 

tion at larger areal units (coarse level) is possible by aggre- 

gating (e.g. averaging) the fine level estimates within the 

coarse level, while using only the data at the fine level. 

In practice, data could be available at different geo- 

graphically aligned levels. For example, the outcome of 

interest could be available in the form of aggregation at 

the census block, block group, and census tract: the re- 

sponses at the census block could be summed up to obtain 

the responses at the block group, which in turn could be 

summed up to obtain the responses at the census tract. 

This kind of data aggregation results in losing informa- 

tion at the coarse level (e.g. block group and census tract). 

This is known as a scaling effect in geography ( Wong, 

2009 ). Scaling effects arise when data are aggregated from 

a lower (e.g. census tract) into a higher geographical level 

(e.g. county). In the literature, multiscale models have been 

used in different fields to solve scaling problems at multi- 

ple scale levels ( Basseville et al., 1992 ; Berliner et al., 1999 ; 

Calder et al., 2009 ; Chou et al., 1994 ; Craigmile and Gut- 

torp, 2011 ; Delouille et al., 2006 ; Huang and Cressie, 20 0 0 ; 

Huang et al., 2002 ; Johannesson et al., 2007; Kolaczyk and 

Huang, 2001 ; Nychka et al., 2002 ; Vidakovic, 1999 ; Wikle 

et al., 2001 ; Zhu and Yue, 2004 ). 

In spatial epidemiology, researchers have implemented 

multiscale models to account for scaling effect due to 

the aggregation of data ( Banerjee et al., 2004; Cressie, 

1996 ; Wong, 2009 ) by factorizing the likelihood at the 

coarse (high) level into the fine (low) level ( Louie and Ko- 

laczyk, 2004, 2006a, 2006b ). Alternatively, we ( Aregay et 

al., 2015a, 2015b, 2016a, 2016b ) developed a shared ran- 

dom effect multiscale model that accommodates the ag- 

gregation (scale) effect by inheriting the coarse level ef- 

fect into the fine level. However, it could be argued that 

the latter approach uses the data twice as the data at the 

coarse level are an aggregation of the data at the fine level. 

The objective of this paper is to describe risk variations 

at fine and coarse levels simultaneously by accommodat- 

ing scaling and contextual effects. To achieve this goal, we 

applied and compared different models. First, we compare 

the shared multiscale model with the shared multilevel 

model in real and simulated data sets. Second, we study 

the impact of ignoring the contextual effects on the esti- 

mation of the risk variations at both the fine and coarse 

levels by simulating data with strong contextual effects. 

Note that the focus of this paper is on studying contextual 

effects although we touch on scaling effects as well. 

The structure of the paper is as follows. In Section 2 , 

we present the data that motivated us to conduct this re- 

search. Section 3 describes the statistical methods as well 

as the design of the simulation study, while Section 4 ded- 

icates to the results obtained from fitting the models to 

the real and simulated data sets. Finally, in Section 5 , we 

present the discussion and concluding remarks. 

2. Georgia oral cancer data 

We are motivated by the county level data available in 

the state of Georgia via OASIS system ( http://oasis.state.da. 

us ). We consider the number of persons discharged from 

non-federal acute-care inpatient facilities for oral cancer 

in 2008. The observed outcomes of the counties are ag- 

gregated (summed up) to the public health (PH) districts. 

These aggregations of data can induce a scaling effect. The 

state of Georgia consists of 159 counties (see left panel in 

Fig. 1 ) that are classified into 18 PH districts (see the right 

panel of Fig. 1 ). The grouping of the counties into PH dis- 

tricts can induce a contextual effect. Each PH district con- 

sists of one or more counties. The PH districts are used 

for administration of public health resources. The Georgia 

Department of Public Health (DPH) funds and collaborates 

with the 18 PH districts. The goal of modeling the risk vari- 

ation at both the county and PH district levels is that it 

can be used for allocating of health resources at both lev- 

els in a cost-effective manner. Hence, the DPH can use the 

risk mapping results to legislate regulations to protect the 

public health in each county as well as in each PH district. 

The observed standardized morbidity ratio (SMR), 

which is the ratio of the outcome to the expected number 

of cases, at both the county and PH levels are displayed 

in Fig. 2 . We can see that the scaling effect smooths out 

the county level risk variation when the data are aggre- 

gated into the PH districts. To address both the contextual 

and scale effects, we propose different models described in 

Section 3 . It is worth mentioning contextual and scale ef- 

fects have an inverse relationship. When we have strong 

presence of contextual effects, we will have weak scale 

effects because the risk variations will be similar at the 

fine (e.g. county) and coarse (e.g. PH districts) levels (see 

Fig. 3 ). The scales of the relative risk (RR) ranges from 0.61 

to 1.68 on both scale levels. On the other hand, when there 

are weak contextual effects, the scale effects will be strong 

(see Fig. 4 ). The scale of the RR in the left panel is between 

0.45 and 2.23, whereas in the right panel it is between 

0.97 and 1.49 indicating that the presence of a relatively 

strong scale effect smoothed out the risk variation at the 

county level when it is aggregated into the PH level. We 

can also see this kind of behavior in Fig. 2 . The application 

of the models to the Georgia oral cancer data is deferred 

to Section 4.2 . 

3. Models for aggregated small area data 

In the next section, we present the models most rele- 

vant to small area aggregated data. To make it clear, we 

abbreviated the four models considered below as M1, M2, 

M3, and M4 and they represent Model 1, Model 2, Model 

3, and Model 4, respectively. We define the models us- 

ing the two scale levels Georgia oral cancer study. As- 

sume that y ij is the outcome of interest for the j th 

th county 

(fine scale) at the i th 

th public health district (coarse scale) 

http://oasis.state.da.us
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