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a b s t r a c t 

The influence of climatic variables on the dynamics of human malaria has been widely 

highlighted. Also, it is known that this mosquito-borne infection varies in space and time. 

However, when the data is spatially incomplete most popular spatio-temporal methods of 

analysis cannot be applied directly. In this paper, we develop a two step methodology to 

model the spatio-temporal dependence of malaria incidence on local rainfall, temperature, 

and humidity as well as the regional sea surface temperatures (SST) in the northern coast 

of Venezuela. First, we fit an autoregressive distributed lag model (ARDL) to the weekly 

data, and then, we adjust a linear separable spacial vectorial autoregressive model (VAR) 

to the residuals of the ARDL. Finally, the model parameters are tuned using a Markov Chain 

Monte Carlo (MCMC) procedure derived from the Metropolis-Hastings algorithm. Our re- 

sults show that the best model to account for the variations of malaria incidence from 

20 01 to 20 08 in 10 endemic Municipalities in North-Eastern Venezuela is a logit model 

that included the accumulated local precipitation in combination with the local maximum 

temperature of the preceding month as positive regressors. Additionally, we show that al- 

though malaria dynamics is highly heterogeneous in space, a detailed analysis of the esti- 

mated spatial parameters in our model yield important insights regarding the joint behav- 

ior of the disease incidence across the different counties in our study. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Malaria is a disease caused by infection with the 

parasites of the genus Plasmodium and transmitted 

among human hosts through the bites of infected female 

Anopheles mosquitoes. Mosquito abundance, length of 

the development period of Plasmodium within the vector 

insect, Anopheles survival and reproduction, and the blood 

feeding frequency of the mosquito vector on host deter- 
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mine the risk and intensity of malaria infection in time 

and space ( Macdonald, 1957 ). All these biological parame- 

ters, in turn, are largely dependent on climatic conditions 

such as temperature and rainfall ( Stresman, 2010 ), which 

can simultaneously act at different scales. Consequently, 

epidemiologic patterns of malaria vary in space and time. 

Previous studies of malaria epidemics in Neotropical ar- 

eas have shown that spatial local transmission of this dis- 

ease is highly heterogeneous ( Grillet et al., 2010a, 2010b; 

Rodríguez et al., 2013 ), with disease areas varying from 

persistent transmission (hot spots) to moderate to low lo- 

cal transmission (cool spots) where the infection would 

disappear by itself if the area were isolated ( Grillet et al., 

2010a ). As a function of time, malaria occurrence can be 

characterized by short-term seasonal fluctuation mainly 
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caused by the annual season changes in rainfall and longer- 

term cycles of around 2–6 years, accounted by the interac- 

tion of El Niño Southern Oscillation (ENSO) with local rain- 

fall ( Grillet et al., 2014 ). Particularly, these authors showed 

that rainfall mediates the effect of ENSO on malaria locally. 

This is, increased rains during this climatic event from the 

last phase of the season (September-November) had a crit- 

ical role in the temporal dynamics of Plasmodium . Since an 

efficient control of this disease and prediction of its emer- 

gence or spread to new geographic regions will require 

an understanding of that heterogeneity, there is a growing 

need for analytical methods that account for the malaria 

dynamics in space and time. 

An autoregressive model is a natural first appropriate 

approach for modeling the temporal dependence struc- 

ture of the disease time series ( Allard, 1998 ). However, if 

the climate-malaria incidence relationship varies spatially 

within a given region, then the use of a single model for 

the whole region could lead to a worse model fit in some 

areas than others, which, in turn, would be manifested as 

spatial dependence in the model residuals ( MJ and MRT, 

2005 ). Consequently, there is a need to investigate if, and 

how, temporal variations in malaria infections could be re- 

lated to exogenous environmental factors by taking into ac- 

count both scales: time and space. 

There is a very extensive literature on spatio-temporal 

methods for malaria both in terms of a general model- 

ing perspective and specific malaria models (e.g., Banerjee 

et al., 2008 , Bi et al., 2003 ; Bri ё t et al., 2008 ; Gomez- 

Elipe et al., 2007 ; Ippoliti et al., 2012 ; Teklehaimanot et al., 

20 04 ; Zhou et al., 20 04 ). In particular, we cite Ippoliti et al. 

(2012) and Banerjee et al. (2008) as important references 

for general spatio-temporal models like the ones consid- 

ered in this work. The first authors consider a dynamic 

factor model to study the relationship between spatio- 

temporal processes. The model is then used to identify 

clusters of locations whose behavior is described by a po- 

tentially small set of common dynamic latent factors. The 

second authors consider hierarchical Gaussian processes. 

Although specifically designed to deal with large data sets, 

their methodology based on the introduction of simpler 

(lower dimensional) “predictive processes” is quite appeal- 

ing in general. Both papers then use MCMC procedures in 

order to estimate the model parameters. For the specific 

problem of modeling malaria, we highlight the work by 

Rumisha et al. (2014) and Edlund et al. (2012) . The for- 

mer considers hierarchical models as those developed by 

Banerjee et al. (2008) , for female mosquito counts tak- 

ing into account environmental exogenous factors and sea- 

sonal, temporal and spatial random effects and appropri- 

ately choosing a subset of locations. The latter compares 

malaria incidence response to fluctuations in historic cli- 

matic data taking into account spatial variability to mea- 

sure sensitivity of the response to certain climatic vari- 

ables. 

In this article, our main goal is to design a procedure 

in order to fit a spatio-temporal model predicting malaria 

incidence taking into account a heterogeneous geogra- 

phy and the non-availability of spatially varying climatic 

variables across the whole region of study, an endemic- 

epidemic-prone region in Northern South America, involv- 

ing several counties. Lack of complete spatial information 

at a county scale does not allow us to use the models and 

procedures described above. Completing available informa- 

tion based on NOAA or related spatially detailed data is not 

an option at the scales of interest (counties). Although it 

would be possible to use average information over the re- 

gion of interest (instead of data from a single observation 

site) this would not acknowledge for observed spatial het- 

erogeneity. 

To deal with this problem we adopt a two-stage pro- 

cedure. In a first step, we adjust an autoregressive dis- 

tributed lag model (ARDL) to explain the temporal vari- 

ation of malaria infection based on the exogenous local 

variables humidity, precipitation, and temperature as well 

as the sea surface temperatures of the eastern and central 

tropical Pacific as an index of the El Niño Southern Oscilla- 

tion (ENSO) regional phenomenon. This will be considered 

as our null or base model. In a second step, we adjust a 

spatio-temporal model to the residuals of the ARDL model 

to include spatial dependence. Given the absence of exoge- 

nous data across space, it is not possible to follow a dy- 

namic factor model approach as in Ippoliti et al. (2012) or 

a hierarchical model as in Banerjee et al. (2008) . Our ap- 

proach uses a Markov Chain Monte Carlo (MCMC) proce- 

dure, described in detail below, to sample from an ap- 

propriate posterior distribution for the parameters assuring 

compliance to certain restrictions on the model. Model fit 

is then assessed by looking at the model’s residuals vari- 

ance (for each county) and compliance to the model’s as- 

sumptions. As a by product, analysis of the model’s spatial 

parameters (parameters defining the spatial dependence) 

provides valuable insights regarding the spatial behavior of 

the Malaria incidence rate (MIR) in the considered sectors. 

2. Methodology 

2.1. Study site 

The study was carried out in the southern coastal low- 

land areas of the Sucre State, North-eastern Venezuela (see 

Fig. 1 ) where Anopheles aquasali s is the main vector of P. 

vivax ( Grillet, 20 0 0 ). Here, the annual mean temperature 

is 27 ° C–28 ° C and total annual rainfall is 120 0–170 0 mm, 

with a rainy season from May to November and a dry sea- 

son from December to April. 

2.2. Epidemiological and climatic data 

Weekly cases of malaria (2001 to 2008 for a to- 

tal of N = 416 times) from 10 Municipalities grouped in 

12 nearby counties (Parroquias) in northern Venezuela 

were obtained from the Malaria Control Program database, 

Venezuelan Ministry of Health and the Malaria incidence 

rates (MIR) for each studied administrative area (no. of 

new cases /population at risk per time) were calculated. 

2.3. Climatic data 

Contemporaneous local climate data were obtained 

from the nearest meteorological station (Guiria station: 

10 ° 34’ N 62 ° 17’ W). Data included mean temperature, 
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