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a b s t r a c t

Areal unit or discrete spatial data is customarily modeled with
the goal of spatial smoothing, typically using Markov random field
models. Examples include image restoration and disease mapping.
Here,we focus on adifferent issue for suchdata;we consider the set
of areal units as only partially observed. One application is to learn
about the smoothing behavior of various Markov random field
models. That is, if two different smoothing priors are used, how can
wequantify the relative smoothing that each imposes?Wepropose
to fitmodels of interest to a portion of the data and hold out the rest
for model comparison. A second application concerns the setting
where, in fact, only a portion of the areal units have been observed,
and we seek prediction of the remainder. Our motivating context
investigates the performance of semiconductor chips, created as
dies (the areal units) within wafers within lots, yielding nested
modeling structure. Multiple tests are administered to each die
involving both binary and continuous measurements. In practice,
only a small subset of the dies are sampled, resulting in prediction
of performance for the remaining unsampled dies. Furthermore,
dies in the same locations are tested on each wafer, and the man-
ufacturing process encourages within wafer, between wafer and
between lot dependence. Other missing data applications include
damaged images and small area estimation with missing obser-
vations for some units. We demonstrate prediction first with an
image that is observed at several rates ofmissingness. Then, a well-
studied Ohio lung cancer dataset is used for model comparison
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with regard to smoothing. Finally, examination of the nested mod-
eling for semiconductor chip data is offered.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider the situation of areal unit data, so-called discrete multivariate spatial data, where
we have areal units over a region which are only partially observed, and we seek to infer about the
unobserved units. Applications we envision include disease mapping, small area estimation, image
analysis, and our motivating, more challenging application, performance of semiconductor chips.
Customarily, with areal unit data, the objective is spatial smoothing (Banerjee et al., 2014), employing
a complete dataset over the units; missingness is not a concern. With a goal of smoothing it is
difficult to assess model performance (see Stern and Cressie, 1999, for early thoughts in this regard).
Since visual assessment is qualitative, we might ask how one can quantify one smoothing relative
to another? Moreover, under fitting to the full data, with no hold out data for validation, if model
performance is assessedby comparisonof predictedwith observed, itwill be impossible to outperform
independent local (unit-level) estimation. Smoothing does not seek to minimize a goodness of fit
criterion.

Here,we are interested in either of the following two scenarios. The first supposes that a substantial
portion of our data is missing. For example, in the case of semiconductor chip data, we have the
following setting. We have a run consisting of lots which are portions of a silicon ingot to which
impurities are added in order to affect electrical properties. Each lot is sliced into thin wafers, and
each wafer is partitioned into 195 areal units called dies, illustrated in Fig. 1. After production, a die is
tested with respect to meeting measures of performance, e.g., speed, reliability, stress, power usage,
in order to determine whether it is acceptable for use as a semiconductor chip. It is infeasible to test
all of the dies in all of the wafers within a lot. In practice, performance is measured typically for only a
subset of the dies but predictive inference is sought regarding performance for all of the dies on all of
the wafers. In our examples, 20% of the dies are observed, see Fig. 1; however, the sampling rate can
vary significantly with the application.

The second scenario focuses on model comparison for areal unit data. For instance, in the disease
mapping context, we observe counts of disease cases across areal units (see, e.g., Clayton and Kaldor,
1987;Mollié et al., 1996;Green andRichardson, 2002; Lawson, 2013). Typically, spatial randomeffects
are introduced usingMarkov random field (MRF)models in the form of a conditionally autoregressive
(CAR) specification (see below) in the log mean for the counts. Model comparison would seek to
compare the various CAR models that have been proposed in the literature (e.g. Besag, 1974; Besag
et al., 1991; Leroux et al., 2000; Dean et al., 2001). As above, these models provide smoothing, here,
of relative risks. With models fitted to the full set of counts, how can we decide which smoothing
of the relative risks is preferred? Minimizing a predictive mean square error criterion will not be
appropriate sincewe are not trying to fit the observed counts. Instead, usingmetrics such as predictive
mean square error or rank probability scores (Gneiting and Raftery, 2007)with hold out data provides
potentially useful out-of-sample measures of smoothness; their use in this context does not seem to
be suggested in the literature. Illustratively, we might fit a given model to a portion of the units,
selected at random, and predict for the remainder; we might do this several times to average over
the randomness in the selection of fitting and validation units.

Modeling for areal unit data arises according to the nature of the data. For example, with count data
for the units, as in disease mapping, we think only in terms of measurements at areal scales. There
exists a conceptual count for any subregion/areal unit of the study area, butwe do not imagine a count
at a point, i.e., there is no point-referenced surface of counts. Similarly, if we collect proportions as the
data for the units, there is no proportion at a point. Such settings result in finite dimensional model
specifications with MRFs providing the customary modeling (e.g. Rue and Held, 2005; Banerjee et al.,
2014).

Alternatively, we can imagine areal unit measurements arising as averages of a surface over a
region. Such a surface is customarily viewed as a realization of a stochastic process, typically a
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