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a b s t r a c t

We consider the problem of fitting an isotropic zero-mean station-
ary Gaussian fieldmodel to (possibly noisy) observations, when the
model belongs to the Matérn family with known regularity index
ν > 0, or to the spherical family. For estimating the correlation
range (also called ‘‘decorrelation length’’) and the variance of the
field, two simple estimating functions based on the so-called ‘‘con-
ditional Gaussian Gibbs-energy mean’’ (CGEM) and the empirical
variance (EV)were recently introduced. This article presents an ex-
tensive Monte Carlo simulation study for problems with around a
thousand observations and settings including large, moderate, and
even ‘‘small’’, correlation ranges. The known observation sites are
either on a 2D grid (including a case of ‘‘very non-uniform’’ grid
spacings) or randomly uniformly distributed on a simple 2D region.
Some experiments for a 256×256 gridwithmissing values are also
analyzed.

This study empirically demonstrates that, for all the (possi-
bly random) uniform designs, the statistical efficiency of CGEM-EV
compared to exact maximum likelihood (ML) is globally very satis-
factory (except a degradation for the very extremal ranges in some
contexts) provided the signal-to-noise ratio (SNR) is strong enough
and ν is not too large, this SNR restriction being alleviated as ν de-
creases. For the ‘‘very non-uniform’’ design, a simple weighting of
EV restores this efficiency. In the less favorable cases, the statisti-
cal loss remains in fact acceptable: e.g. for the largest considered
index (ν = 3/2) and a ‘‘not strong enough’’ SNR, it may happen (in
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fact only for large ranges) that CGEM-EV almost doubles the mean
squared error for the range parameter or for the widely used com-
bination of the two parameters known asmicroergodic-parameter.
Furthermore an important conclusion for computational efficiency
is that the use of the natural fast randomized-trace version of
CGEM-EV does not significantly degrade this statistical efficiency.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Wemainly consider the following statistical model which arises e.g. in remote sensing image anal-
ysis: let Z(s), s ∈ R2, be a zero mean stationary Gaussian stochastic process whose autocorrelation
function is assumed to belong to the popular isotropic Matérn family. One realization of this pro-
cess is observed at n = n1 × n2 regularly spaced (with step-size δ1 in abscissa, δ2 in ordinate) sites
sk, k = 1, . . . , n, of [0, (n1 − 1)δ1] × [0, (n2 − 1)δ2], with an additive Gaussian white noise whose
variance is σ 2

N (this noise can model either suspected homoscedastic measurement errors or an addi-
tional nugget effect in Z , see e.g. Zhang and Zimmerman, 2007 and references therein). In this article,
we restrict ourselves to the case where σN is known, e.g. from previous calibration experiments (as
it is common when dealing with satellite data, see Tzeng et al., 2005). Using a standard lexicographic
ordering, the observations thus form a vector y of size nwhose law is Gaussian:

y ∼ N (0, τ 2
0 Rθ0 + σ 2

NIn) (1.1)

with In denoting the identity matrix and Rθ the autocorrelation matrix of the gridded process i.e. the
block Toeplitz matrix (with n2

1 Toeplitz square blocks, each of size n2 × n2) whose coefficients are
given by

[Rθ ]j,k := ρν,θ (∥sj − sk∥), j, k = 1, . . . , n,

∥ · ∥ being the Euclidean norm and ρν,θ the Matérn autocorrelation function

ρν,θ (x) =
(θx)ν

Γ (ν)2ν−1
Kν (θx) , x > 0, θ > 0,

where Kν is the modified Bessel function of the second kind of order ν > 0. For more details on these
widely used autocorrelation functions see Guttorp and Gneiting (2006). Note that

τ 2
0 = E


(Z(s))2


≡ E(y2k) − σ 2

N

will be called the process (or signal) variance. When mentioned, we will also consider another well
known autocorrelation function, namely the spherical model ρS

θ . See e.g. Zhang and Zimmerman
(2007) for these definitions. Notice that a significant variant of the above uniform grid, that we call ‘‘a
very nonuniform Cartesian grid’’, will be analyzedwith some details.We also study a case of n = 1000
observation sites randomly but uniformly distributed on a simple 2D region. And, to illustrate the
‘‘scalability’’ offered by the proposed parametric estimationmethod, wewill also consider, albeit with
less extensive simulations, a much larger 256× 256 grid with a fewmissing regions (see Section 2.4).

The order ν, often called the regularity (or differentiability) index, is assumed to be known in this
paper. Recall that ρ1/2,θ (x) = exp(−θx) is the very popular exponential model, and that simple
expressions also exist for ρν,θ (x) for ν = 3/2 and 5/2: these ν’s correspond to models also often
used (see e.g. Stein, 1999; Rasmussen and Williams, 2006). In the Monte Carlo simulation study of
this paper, we only consider three contexts: the order ν will be either 1/6, 1/2 or 3/2.

The parameter θ−1 is often called the ‘‘decorrelation length’’ or ‘‘the range parameter’’.
Estimation of the variance and range parameters in such autocovariance models is needed for

various tasks, for example for establishing confidence bands for the autocovariance function, for
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