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a b s t r a c t

In this paper a Bayesian geostatistical model is presented for fu-
sion of data obtained at point and areal resolutions. The model is
fitted using the INLA and SPDE approaches. In the SPDE approach,
a continuously indexed Gaussian random field is represented as
a discretely indexed Gaussian Markov random field (GMRF) by
means of a finite basis function defined on a triangulation of the
region of study. In order to allow the combination of point and
areal data, a new projection matrix for mapping the GMRF from
the observation locations to the triangulation nodes is proposed
which takes into account the types of data to be combined. The
performance of the model is examined and compared with the
performance of the method RAMPS via simulation when it is fitted
to (i) point, (ii) areal, and (iii) point and areal data to predict several
simulated surfaces that can appear in real settings. The model
is applied to predict the concentration of fine particulate matter
(PM2.5), in Los Angeles and Ventura counties, United States, during
2011.
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1. Introduction

Spatial and spatio-temporal data arise in a wide range of scientific disciplines, including the
environmental, epidemiological, geographical and ecological fields (Cressie, 1993). Data are typically
observed either at points in space (point data), or over areal units such as counties or postal codes
(areal data). Examples include air pollutionmeasurements taken at a set of ambient stations, tempera-
ture and precipitation measurements fromweather stations, and population sizes from census tracts.
In epidemiology, point data arise when the locations at which cases of disease occur are available,
and areal data are often reported when point data are aggregated over geographical subregions of the
region of study due to ethical concerns over data use and patient confidentiality (Lawson, 2012).

Spatially misaligned data are becoming increasingly common due to advances in both data collec-
tion andmanagement, as well as due to the ability to merge data from large databases such as disease
registries. When information is available frommultiple sources on different scales, data may be fused
to examine just one variable, such as disease counts recorded in different administrative units. Here
the aim is interpolation (Banerjee et al., 2014). Alternatively, we might wish to relate one variable
to other variables that are available at different spatial resolutions and alignments. An example is
determining whether the risk of an adverse outcome provided at zip level is related to exposure to an
environmental pollutant measured at a network of stations, after adjusting for population at risk and
other county level demographic information. Here the aim is regression (Banerjee et al., 2014).

In this paper wewill focus on the data fusion problemwhich seeks to learn about a particular vari-
able by combining data that are available at different spatial scales. Others have previously developed
Bayesian models enabling fusion of data obtained at areal and point-referenced resolutions via the
use of latent point-level processes (Fuentes and Raftery, 2005), hierarchical downscaling (Berrocal
et al., 2010), modeling data conditional on the resolution (Wikle and Berliner, 2005), and the use of
algorithms such as the reparameterized andmarginalized posterior sampling (RAMPS) (Cowles et al.,
2007).

The previous approaches use Bayesian predictive inference implemented via Markov chain Monte
Carlo (MCMC) based methods. These methods have made a great impact on statistical practice by
making Bayesian inference tractable for complex models but they also present a wide range of
problems in terms of convergence and computational time (Taylor and Diggle, 2014). In this paper
we propose general and flexible hierarchical Bayesian models to analyze spatially misaligned data. In
order to fit the models, we resort to the Integrated Nested Laplace approximation (INLA) (Rue et al.,
2009) and the Stochastic Partial Differential Equation (SPDE) (Lindgren et al., 2011) approacheswhich
are a computationally effective alternative to MCMC for Bayesian inference. In order to allow the
combination of data at different spatial resolutions, we propose a new projection matrix for mapping
the GMRF in the SPDE method which takes into account how the different types of data are collected.
This new approach is fast and flexible.

The outline of the paper is as follows. First, we present flexible models for handling spatial
misaligned data in fusion problems. Then, we briefly introduce the INLA and SPDE approaches for
Bayesian inference, and present the projection matrix that allows the combination of point and areal
data. In Section 3, a simulation study is carried out to compare the performance of the model when
estimating several simulated surfaces using point, areal, and point and areal data combined. Then,
in Section 4 we evaluate the model in comparison to the RAMPS alternative method for data fusion
by applying the methods to several simulated data scenarios. In Section 5, we present an application
of the model to real data showing spatial misalignment. In this application, we obtain the spatial
distribution of fine particulate matter (PM2.5), in Los Angeles and Ventura counties, United States,
during 2011. Finally, the conclusions are presented.

2. Models and inference

2.1. Models

The models proposed assume that there is a spatially continuous variable underlying all obser-
vations that can be modeled using a Gaussian random field process. This process is denoted by
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