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a b s t r a c t

A new spatial scan statistic is proposed for multivariate data in-
dexed in space. Such as many other scan methods, it relies on
a generalized likelihood ratio but it also takes into account the
correlations between variables. This spatial scan test seems to be
more powerful than the independent version, whatever the level of
correlation between variables. We apply this method to a data set
recording the levels of pollutant metals in the area of Lille, France.
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1. Introduction

Cluster detection has become a very fruitful research subject since the earlier work of Naus (1963):
a thorough review of the proposed methods, which have been applied to many different fields of
application, is given by Glaz et al. (2009).

Most of the cluster detectionmethods are designed for count data, i.e. point processes made of the
random coordinates of n events observed in S, a bounded subset of Rd: the goal is to identify, if they
exist, the areas in which the concentration of events is abnormally high. Since the article by Cressie
(1977), the scan statistic denotes the maximal concentration observed on a collection of potential
clusters. Originally, the size of all the potential clusters had to be the same, so that the scan statisticwas
just themaximum number of events in a window of size d, d being fixed a priori. This major drawback
vanished when Kulldorff (1997) introduced the scan statistic based on generalized likelihood-ratio
in a Poisson model, which allows to compare the concentration in windows having different sizes. In
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the same article, the Bernoulli model scan statistic is defined to analyse point processes with binary
marks, such as case/control data: if the marks of the cases are 1 and those of the controls are 0, the
goal is to identify the areas in which the marks are significantly higher, i.e. the areas where there are
significantly more cases, taking into account the number of controls. Later on, Kulldorff et al. (2009)
introduced the Gaussianmodel scan statisticwhich allows to analyse point processeswith continuous
marks.

Sometimes, such as in environmental surveillance, numerous continuous variables have to be
analysed in the same time. A multivariate scan statistic combining different univariate scan statistics
has been proposed by Kulldorff et al. (2007) and presents the great advantage that both count data
and continuous data can be simultaneously analysed. However, this scan statistic does not take into
account the covariances between different variables.

In this paper we develop a scan statistic for multivariate continuous data that is based on the
Gaussianmodel and takes into account the covariances between variables. Under the null hypothesis,
all observations come from the same distribution. Under the alternative hypothesis, there is one
cluster location where the observations have a different mean vector than outside that cluster. A
key feature of the method is that the statistical inference is still valid even if the true distribution is
not Gaussian, assuring that the correct alpha level is maintained. This is accomplished by evaluating
the statistical significance of clusters through a permutation-based Monte Carlo hypothesis testing
procedure. Section 2 describes the scan statistic and its computational aspects. The scan statistic is
then applied to real and simulated datasets in Section 3. The paper is concluded with a discussion.

2. A scan statistic for multivariate data

Let X1, . . . , Xp denote a collection of p variables which aremeasured in n different spatial locations
s1, . . . , sn included in D. The area D ⊂ Rd is the observation domain and the spatial locations are
usually bidimensional (d = 2). The measure of variable X j in location si is denoted by xji and all
measures are recorded in a n × p matrix

X = (xji), 1 ≤ i ≤ n, 1 ≤ j ≤ p.

The 1 × p vector containing all the measures in si, and corresponding to the ith row of matrix X , is
denoted by Xi. Our goal is to detect the spatial area Z ⊂ D in which the measures of the variables are
significantly different (higher or lower) than elsewhere.

Most of the spatial cluster detectionmethods consist inmaximizing a likelihood ratio in a collection
of potential clusters. Thus the two questions to answer are: how to choose the potential clusters and
which likelihood ratio should be used?

Concerning the potential clusters, we will focus on variable-size circular clusters, such as Kulldorff
(1997). The set of potential clusters, denoted by D, is the set of discs (or balls if d = 3) centred on a
location and passing through another one:

D = {Di,j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}

where Di,j is the disc (or the ball) centred on si and passing through sj. Since the disc may have null
radius (if i = j), the number of potential clusters is n2. Remark that many other possibilities, such as
elliptic clusters (Kulldorff et al., 2006) or graph-based (Cucala et al., 2012), have been proposed.

As said in the Introduction, Kulldorff et al. (2009) introduced a Gaussian-based scan statistic to
detect clusters when dealingwith univariate continuous data. It relies on the likelihood ratio between
two hypotheses: the marks are supposed to be normally-distributed and independent but the null
hypothesis considers equal means and variances whereas the alternative hypothesis considers equal
variances but different means inside and outside the potential cluster. Our method extends this
procedure to the multivariate case.

The random vectors X1, . . . , Xn, i.e. the measures associated to the n different locations, are
assumed to be independent: this is a very classical assumption when introducing likelihood-based
scan statistics. The null hypothesis H0, corresponding to the absence of any cluster in the data, is the
following:

Xi ∼ Np(µ∗, Σ∗), ∀i = 1, . . . , n,



Download English Version:

https://daneshyari.com/en/article/5118991

Download Persian Version:

https://daneshyari.com/article/5118991

Daneshyari.com

https://daneshyari.com/en/article/5118991
https://daneshyari.com/article/5118991
https://daneshyari.com

