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a b s t r a c t

Spatial data on disease incidence locations are often aggregated to
regional counts to preserve privacy, and spatio-temporalmodelling
of such can be problematic when there are boundary changes
over the study period. Here an inhomogeneous Poisson process
with intensity depending on variations in population (known a
priori) and a smoothly varying relative risk is estimated with a
local-Expectation–Maximization (or local-EM) algorithm. Using in-
cidence data for male bladder cancer in Nova Scotia, Canada, the
question of whether the data are consistent with spatially varying
but temporally constant relative risk is examined. Areas where
there is evidence that relative risk is substantially greater than 1
are identified with the intention of assessing the possible presence
of environmental risk factors.

This paper extends existingwork by incorporating a temporally
varying risk surface and an explicit data structure which contains a
mixture of point locations and locations aggregated to non-nested
areas. This added flexibility allows the modelling of data amal-
gamated from different sources and collected over many years.
While local-EM leads naturally to an Expectation–Maximization–
Smoothing algorithm, the extension to mixtures of aggregations
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leads to a modified algorithm that includes an additive term at
every iteration to account for observed point locations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

One difficulty that often arises when modelling small-scale spatial variation in disease risk is
that the relevant data are often spatially aggregated. Residential locations of individual cases are
typically reported as geographical regions either to preserve privacy or because full street addresses
are not collected or retained. When locations are aggregated to non-overlapping and static regions,
such as census areas or administrative units, disease risk is often treated as being spatially discrete
(or equivalently piecewise-constant) at the region level. The Besag–York–Mollié model (or BYM,
see Besag et al., 1991) continues to be the dominant methodology for modelling random spatial
variation in disease risk for data of this sort, using a spatially autoregressive random effect to allow for
possible dependence between risk in neighbouring regions. While this approach is often adequate for
data collected over a short time interval, it can be problematic when data span a long time period
containing more than one census of population. Spatial boundaries may change during the study
period, and the degree of spatial aggregation of locations tends to lessen over time. Further, temporal
effects are harder to ignore as the time period of interest is lengthened and spatio-temporal variation
becomes more important to account for. Modelling data collected over many years is of particular
importance when studying a rare disease in an area with low population density, as the number of
cases in a single year or census period will be small. Many environmental exposures of interest to
epidemiologists (i.e. involving industrial facilities or human consumption of ground water) occur in
areas of relatively low population, and the health outcomes with which they are postulated to have
an association are often very specific (i.e. childhood cancers). Combining these issues with the fact
that administrative regions tend to be large outside of urban areas results in a large class of problems
where the BYMmodel is of limited usefulness.

The approach taken here is to treat aggregated locations as a ‘‘missing data’’ or censoring problem,
constructing a spatial point process model for case locations and making inferences conditional on
the unknown locations being within their respective aggregation areas. The first attempt at explicitly
modelling area-level data as an aggregated continuous process appears to be Brillinger (1990), who
used a kernel smoothing algorithm of which the methods used here are a direct extension. More
recently, Li et al. (2012) specify a fully parametric log-Gaussian Cox process (or LGCP) model for
the case locations and use a Markov Chain Monte Carlo (MCMC) data-augmentation algorithm for
inference where the locations are an unobserved latent variable, an approach improved and extended
by Taylor et al. (2015). The methodology used by Banerjee et al. (2014) specifies a latent BYMmodel
in place of a latent LGCP, where the intensity is piecewise constant on a set of regions nested within
the boundaries of the regions on which data are observed.

A different approach involving spatially aggregated data beganwith Prentice and Sheppard (1995),
and modelled the intensity of events (or probability with which events are cases or controls) as log-
linear functions of spatial covariates. Location uncertainty in this context is manifested as uncertainty
as to which values of the covariates are ascribe to each case, and Best et al. (2000) and Huang
et al. (2014) are amongst the papers advancing methodology in this area. The difference between
the two sets of approaches is that the work in the vein of Prentice and Sheppard (1995) is primarily
concerned with estimating the contribution to disease risk from specific covariates of interest. In
contrast, Brillinger (1990) and the Bayesian MCMC papers are concerned with explicit estimation
and inference for spatial variation not explained by modelled covariates.

Here the local Expectation Maximization (local-EM) methods of Fan et al. (2011) and Nguyen
et al. (2012) are extended from purely spatial models to allow for spatio-temporal variation in the
latent risk surface. A simulation-based test for comparing the spatio-temporal model to a spatially-
varying temporally-constant model is developed. Furthermore, an explicit structure for the presence
of multiple types of aggregation in a dataset (mixtures of locations, disjoint regions, and irregular,
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