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a b s t r a c t

Linear regressionmodels are oftenused to describe the relationship
between a dependent variable and a set of independent variables.
However, these models are based on the assumption that the error
(or, in some cases, the response variable) is normally distributed
with constant variance and that the relations are equal throughout
space. Thus, these models may not be the most appropriate to
adjust spatially varying rates and proportions. The Beta Regression
model deals with rates and proportions and has been shown to
be a good approach to model this type of data, since it natu-
rally adapts to variables constrained to an interval of the real line
and exhibiting heteroscedasticity, which is a common character-
istic in this type of data. In addition, to deal with spatial non-
stationarity, Geographically Weighted Regression (GWR) allows
for variability in the parameters by an extension of the linear
regression model, providing a better understanding of the spatial
phenomenon. Therefore, we propose the GeographicallyWeighted
Beta Regression (GWBR) model which combines the features of
the above models such that a better fit is provided in the study of
spatially varying continuous variables restricted to an interval of
the real line. We applied this model to analyze the proportion of
households that have telephones in the state of Sao Paulo, Brazil.
The results were more appropriate than those obtained by the
global models and the GeographicallyWeighted Regressionmodel,
following statistics such as AICc, pseudo-R2, log-likelihood and by
the reduction of spatial dependence computed by Moran’s I.
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1. Introduction

Geographically Weighted Regression (GWR) pertains to a linear model and allows the spatial
modeling of non-stationary processes and was defined by Fotheringham et al. (1996), Brunsdon et al.
(1996, 1998), and Fotheringham et al. (2002). However, it is used when the distribution of the data is
Gaussian. Other distributions were incorporated into the GWR framework such as Logistic (Atkinson
et al., 2003), Poisson (Nakaya et al., 2005), Multinomial Logistic (Luo and Kanala, 2008), and
Negative Binomial (Silva and Rodrigues, 2014), but in many applications the dependent variable
represents a rate or proportion that is usually defined between (0, 1), making the classic GWR (or
the others distributions cited before) inappropriate to model this kind of data, because the estimated
dependent variable can be outside of the interval (0, 1) (Dyke and Patterson, 1952). The first idea
is to apply a transformation to the response variable, but the parameters interpretation would not
be straightforward. Another problem occurs when the proportion p is near 0 or 1, showing some
asymmetry and hence, violating the normality assumption required by classical GWR.

The use of a beta distribution in a regression model dates back to Falls (1974), Brehm and Gates
(1993), McDonald and Xu (1995) and Sulaiman et al. (1999), but the structure of data restricted to
the interval (0, 1) was defined by Ferrari and Cribari-Neto (2004) and named Beta Regression. This
model uses a reparameterization of the classical beta distribution depending on only 2 parameters and
because of its versatility, as shown in Fig. 1, utility and software availability (Cribari-Neto and Zeileis,
2010; Swearingen et al., 2011), it is being used in several areas such as medicine (Peplonska et al.,
2012), economics (Castellani et al., 2012), public policy (Pereira et al., 2014), engineering (Eskelson
et al., 2011), and in spatial statistics by using remotely sensed spectral data (Korhonen et al., 2015).

Thus, the objective of this paper is to extend beta regression concepts to Geographically Weighted
Regression, namely Geographically Weighted Beta Regression (GWBR), in order to model rate or
proportion data restricted to the interval (0, 1) in a spatial context, and, in this way, providing to the
analystwith another option tomodel the data. Section 2presents the specifications of GWBR. Section 3
presents some simulations and a real application to evaluate the potential of GWBR in relation to
classical GWR and beta regression. Conclusions are drawn in Section 4.

2. Specifications of geographically weighted beta regression

The beta distribution has density given by

f (y; a, b) =
Γ (a + b)
Γ (a)Γ (b)

ya−1(1 − y)b−1 (1)

where 0 < y < 1, a > 0, b > 0 and Γ (.) is the gamma function.
Although the beta distribution does not belong to the Generalized Linear Models (GLM), the idea

of Ferrari and Cribari-Neto (2004) was to create a similar structure. As is well known, the mean and
variance of beta distribution are given by:

E(y) =
a

a + b
(2)

Var(y) =
ab

(a + b)2(a + b + 1)
. (3)

Letting µ = E(y) and φ = a + b, then a = µφ and b = (1 − µ)φ. Therefore, from (2) and (3),

E(y) = µ and Var(y) =
V (µ)
1 + φ

(4)

where V (µ) = µ(1 − µ).
The reparameterization of the beta distribution as a function of the mean µ and the precision

parameter φ is (Ferrari and Cribari-Neto, 2004):

f (y) =
Γ (φ)

Γ (µφ)Γ ((1 − µ)φ)
yµφ−1(1 − y)(1−µ)φ−1 (5)

where 0 < µ < 1 and φ > 0.
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