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a b s t r a c t

Spatial heteroskedasticity has been observed in many spatial data
applications such as air pollution and vegetation. We propose a
model, the volatility modulated moving average, to account for
changing variances across space. This stochastic process is driven
by Gaussian noise and involves a stochastic volatility field. It is con-
ditionally non-stationary but unconditionally stationary: a useful
property for theory and practice. We develop a discrete convolu-
tion algorithm as well as a two-step moments-matching estima-
tion method for simulation and inference respectively. These are
tested via simulation experiments and the consistency of the es-
timators is proved under suitable double asymptotics. To illustrate
the advantages that thismodel has over the usual Gaussianmoving
average or process convolution, sea surface temperature anomaly
data from the International Research Institute for Climate and So-
ciety are analysed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A classical assumption made when dealing with spatial data is that the variance is a constant
and the covariance between measurements at two locations is a function of their distance apart. In
practice, however, it has been observed that this does not hold for many data sets and accounting for
spatial heteroskedasticity or spatial volatility has multiple benefits.

The first benefit is the better representation of the data. In a recent paper, it was shown that
including spatial volatility in road topography models better captures the hilliness features of the
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roads (Johannesson et al., 2016). This has implications on estimating the risk of vehicle damage and
simulating fuel consumption. In some settings, the presence of spatial volatility can be also explained.
For example, in a study of sulphur dioxide concentrations by Fuentes and Smith (2001), it was found
that states which lie close to several coal power plants tend to have high variability in their readings.
This was attributed to the dependence of the levels on the wind speed, the wind direction, as well as
the atmospheric stability.

A second benefit of modelling spatial volatility is the potential for improving prediction. This was
seen by Huang et al. (2011) when they fitted a Gaussian process with volatility to vegetation and
nitrate deposition data. In the case of agriculture yields, prediction intervals accounting for spatial
volatility will be useful for insurance companies when they set crop insurance prices (Yan, 2007).

Anotherway of using spatial volatilitywould be as an indicator of regime change. Such an approach
has been taken in desertification and urban planning studies (Seekell and Dakos, 2015; Getis, 2015). In
the first case, regions of high volatility demarcate the bare and the extensive vegetative cover; while
in the second case, it is used to identify slum areas.

In this paper,we introduce stochastic volatility to thewell-knownGaussianmoving average (GMA)
or process convolution model:

Y (x) =


Rd
g(x− ξ)W (dξ), (1)

where x ∈ Rd for some d ∈ N, g is a deterministic (kernel) function and W is the homogeneous
standard Gaussian basis on Rd whose Lévy seed (which we shall define in Section 2) has mean 0 and
variance 1. This results in the so-called volatility modulated moving average (VMMA):

Y (x) =


Rd
g(x− ξ)σ (ξ)W (dξ), (2)

where {σ 2(ξ) : ξ ∈ Rd
} is a stationary stochastic volatility field, independent of W . In Huang et al.

(2011), the stochastic volatility is multiplied as a factor to the main spatial process; here, it appears as
an integrand. As such, Y can sometimes be identified as a solution to a stochastic partial differential
equation (SPDE). Following similar arguments to those on page 559 of Bolin (2014), we find that Y can
be viewed as a solution to:

(κ2
−∆)α/2Y (x) = σ(x)Ẇ (x),

where α > d/2, κ > 0, ∆ =
d

i=1 ∂
2/∂x2i is the Laplacian operator and Ẇ is Gaussian white noise,

when g is a Matérn kernel defined by:

g(x− ξ) = 21−(α−d)/2(κ|x− ξ|)(α−d)/2K(α−d)/2(κ|x− ξ|)/[(4π)d/2Γ (α/2)κα−d], (3)

and K(α−d)/2 is the modified Bessel function of the second kind.
VMMAs can be seen as an extension of the type G Lévy moving average (LMA) recently studied by

Bolin (2014) and Wallin and Bolin (2015):

Y (x) =


Rd
g(x− ξ)L(dξ), (4)

where L is a (homogeneous) type G Lévy basis. This means that the Lévy seed, L′ d
= V 1/2Z where V

is an infinitely divisible random variable and Z is a standard normal random variable independent
of V . This is equivalent to restricting σ 2 in the definition of our VMMA to be infinitely divisible and
independent across locations, which would be a rather strong assumption to make.

In Bolin (2014), an expectation–maximisation (EM) algorithm is used to conduct inference for a
Laplace noise-driven LMA with Matérn covariance. This relies on the connection of the spatial field
to an SPDE and Hilbert space approximations via basis functions. The resulting sparse covariance
matrices help to make the procedure computationally efficient. In Wallin and Bolin (2015), this is
extended to a Monte Carlo EM algorithm to handle cases where there is an additional trend involving
covariates and the E-step cannot be calculated analytically. These EM algorithms make use of the
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