[Spatial Statistics 18 \(2016\) 431–443](http://dx.doi.org/10.1016/j.spasta.2016.09.002)

Tukey max-stable processes for spatial extremes

ATIA STATISTICS

Ganggang Xu ª,*, Marc G. Genton ^{[b](#page-0-2)}

^a *Department of Mathematical Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA*

^b *CEMSE Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia*

A R T I C L E I N F O

Article history: Received 23 December 2015 Accepted 6 September 2016 Available online 21 September 2016

Keywords: Brown–Resnick process Composite likelihood Extremal coefficient Extremal-*t* process Geometric Gaussian process Max-stable process

a b s t r a c t

We propose a new type of max-stable process that we call the Tukey max-stable process for spatial extremes. It brings additional flexibility to modeling dependence structures among spatial extremes. The statistical properties of the Tukey max-stable process are demonstrated theoretically and numerically. Simulation studies and an application to Swiss rainfall data indicate the effectiveness of the proposed process.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Max-stable processes are widely used to model spatial extremes because they naturally arise as the limits of pointwise maxima of rescaled stochastic processes [\(de](#page--1-0) [Haan](#page--1-0) [and](#page--1-0) [Ferreira,](#page--1-0) [2006\)](#page--1-0) and therefore extend generalized extreme-value distributions to that setting; see the reviews of recent advances in the statistical modeling of spatial extremes by [Davison](#page--1-1) [et al.](#page--1-1) [\(2012\)](#page--1-1), [Cooley](#page--1-2) [et al.](#page--1-2) [\(2012\)](#page--1-2), [Ribatet](#page--1-3) [\(2013\)](#page--1-3) and [Davison](#page--1-4) [and](#page--1-4) [Huser](#page--1-4) [\(2015\)](#page--1-4). A useful spectral characterization of simple max-stable processes for which the margins are standardized to unit Fréchet distributions was proposed by [de](#page--1-5) [Haan](#page--1-5) [\(1984\)](#page--1-5), [Penrose](#page--1-6) [\(1992\)](#page--1-6) and [Schlather](#page--1-7) [\(2002\)](#page--1-7). Specifically, let $\{R_j\}_{j=1}^\infty$ be the points of a Poisson process on $(0, \infty)$ with intensity $r^{-2}dr$, and let $\{W_j(s)\}_{j=1}^\infty$ be independent replicates of a nonnegative stochastic process, $W(s)$, on \mathbb{R}^d with continuous sample paths satisfying $E\{W(s)\} = 1$ for all $s \in \mathbb{R}^d$.

Corresponding author. *E-mail addresses:* gang@math.binghamton.edu (G. Xu), marc.genton@kaust.edu.sa (M.G. Genton).

<http://dx.doi.org/10.1016/j.spasta.2016.09.002>

2211-6753/© 2016 Elsevier B.V. All rights reserved.

Then,

$$
Z(s) = \max_{j\geq 1} \{R_j W_j(s)\}\tag{1}
$$

is a max-stable process on \mathbb{R}^d with unit Fréchet marginal distributions; that is, pr{*Z*(*s*) $\ < \ z$ } $\ =$ exp(−1/*z*) for all *z* > 0 and *s* ∈ R *d* . The finite-dimensional distributions of simple max-stable processes follow from [\(1\)](#page-1-0) for any set of *D* locations, s_1, \ldots, s_D :

$$
pr{Z(s1) \le z1,..., Z(sD) \le zD} = exp{-Vs1,...,sD(z1,..., zD)}, z1,..., zD > 0,
$$
 (2)

where the exponent measure

$$
V_{s_1,\ldots,s_D}(z_1,\ldots,z_D)=E\left[\max_{i=1,\ldots,D}\left\{\frac{W(s_i)}{z_i}\right\}\right]
$$

captures all the extremal dependence information. The latter can be summarized by the extremal coefficient function [\(Schlather](#page--1-8) [and](#page--1-8) [Tawn,](#page--1-8) [2003\)](#page--1-8):

$$
\theta_D(s_1,\ldots,s_D) = V_{s_1,\ldots,s_D}(1,\ldots,1) = E[\max_{i=1,\ldots,D} \{W(s_i)\}] \in [1,D],
$$

where the values 1 and *D* for $θ_D$ correspond to complete dependence and independence, respectively. For a pair of locations (*s*1, *s*2), under the stationarity assumption of the latent Gaussian random field *W*(*s*), the bivariate extremal coefficient function $\theta_2(s_1, s_2) \equiv \theta(h)$ with $h = ||s_1 - s_2||$.

Different choices for *W*(*s*) in [\(1\)](#page-1-0) lead to various models for spatial max-stable processes proposed in recent years. In a seminal unpublished University of Surrey 1990 technical report, R. L. Smith proposed a Gaussian extreme-value process based on $W(s) = \phi_d(s - U; \Sigma)$, where $\phi_d(\cdot; \Sigma)$ denotes the *d*-dimensional Gaussian probability density function with covariance matrix Σ and *U* is a unit rate Poisson process on \mathbb{R}^d . [Schlather](#page--1-7) [\(2002\)](#page--1-7) considered the extremal-Gaussian process obtained with $W(s) = (2\pi)^{1/2} \max\{0, \varepsilon(s)\}\$ where $\varepsilon(s)$ is a stationary standard Gaussian process with correlation function ρ_{Ψ} (*h*) and parameters Ψ . A generalization called the extremal-*t* process [\(Nikoloulopoulos](#page--1-9) [et al.,](#page--1-9) [2009;](#page--1-9) [Opitz,](#page--1-10) [2013\)](#page--1-10) was defined by taking $W(s) = \pi^{1/2} 2^{1-\nu/2} [\Gamma\{(v+1)/2\}]^{-1} \max\{0,\varepsilon(s)\}^\nu$ where $\Gamma(\cdot)$ is the gamma function and $\nu > 0$ the degrees of freedom. The case $\nu = 1$ reduces to the extremal-Gaussian process. The pairwise extremal coefficient for the extremal-*t* process is

$$
\theta_t(h) = 2T_{\nu+1} \left\{ (\nu+1)^{1/2} \sqrt{\frac{1-\rho_{\Psi}(h)}{1+\rho_{\Psi}(h)}} \right\},\,
$$

where *T*ν denotes the cumulative distribution function of a standard Student-*t* random variable with $\nu > 0$ degrees of freedom. It is trivial to see that $\theta_t(h) \leq \theta_t^0$ with $\theta_t^0 = 2T_{\nu+1} \{(\nu+1)^{1/2}\}$ and that as $\rho_\Psi(h) \to 0, \theta_t(h) \to \theta_t^0$. The θ_t^0 can only approach 2, which corresponds to independence, when $\nu \rightarrow \infty$, although this can be resolved by incorporating a compact random set element [\(Schlather,](#page--1-7) [2002;](#page--1-7) [Davison](#page--1-11) [and](#page--1-11) [Gholamrezaee,](#page--1-11) [2012;](#page--1-11) [Huser](#page--1-12) [and](#page--1-12) [Davison,](#page--1-12) [2014\)](#page--1-12). Modeling of extreme values with asymptotically in[de](#page--1-13)pendent processes has been discussed by de [Haan](#page--1-13) [and](#page--1-13) [Zhou](#page--1-13) [\(2011\)](#page--1-13), [Wadsworth](#page--1-14) [and](#page--1-14) [Tawn](#page--1-14) [\(2012\)](#page--1-14) and [Padoan](#page--1-15) [\(2013\)](#page--1-15).

Another popular spatial max-stable model is the so-called geometric Gaussian process for which $W(s) = \exp{\{\sigma \varepsilon(s) - \sigma^2/2\}}$ with some $\sigma > 0$. The resulting extremal coefficient is

$$
\theta_{\text{geo}}(h) = 2\Phi \left\{ \sigma \sqrt{\frac{1 - \rho_{\Psi}(h)}{2}} \right\},\tag{3}
$$

where Φ denotes the cumulative distribution function of a standard Gaussian random variable. Similar where \varPsi denotes the cumulative distribution function of a standard Gaussian random variable. Similar
to the extremal-*t* process, $\theta_{geo}(h)$ is bounded above by $\theta_{geo}^0=2\varPhi\left(\sigma/\sqrt{2}\right)< 2$ and the upper-bound

 $\theta_{geo}^0\to$ 2 only if $\sigma\to\infty$. The geometric Gaussian process can be viewed as a special case of the wellknown Brown–Resnick process [\(Brown](#page--1-16) [and](#page--1-16) [Resnick,](#page--1-16) [1977;](#page--1-16) [Kabluchko](#page--1-17) [et al.,](#page--1-17) [2009\)](#page--1-17), where the latent process is defined as $W(s) = \exp{\{\tilde{\varepsilon}(s) - \gamma(s)\}\}\$ with $\tilde{\varepsilon}(s)$ being an intrinsically stationary Gaussian

Download English Version:

<https://daneshyari.com/en/article/5119048>

Download Persian Version:

<https://daneshyari.com/article/5119048>

[Daneshyari.com](https://daneshyari.com)