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a b s t r a c t

This paper reviews recent advances made in testing in spatial
statistics and discussed at the Spatial Statistics conference in
Avignon 2015. The rank and directional quantile envelope tests
are discussed and practical rules for their use are provided. These
tests are global envelope tests with an appropriate type I error
probability. Two novel examples are given on their usage. First,
in addition to the test based on a classical one-dimensional
summary function, the goodness-of-fit of a point process model
is evaluated by means of the test based on a higher dimensional
functional statistic, namely a two-dimensional smoothed residual
field. Second, a goodness-of-fit test of a geostatistical model is
performed based on two-dimensional raw residuals.
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1. Introduction

In spatial statistics, hypothesis tests are essential steps in data analysis. Most often goodness-of-fit
tests are performed in order to check the compatibility of a fitted model with the data. Also other
kinds of hypotheses are studied in which e.g. sets of point patterns, random fields or random sets
are compared, or independencies of marks and points in point patterns or random superposition of
patterns of points with different marks in multi-type point patterns are tested.

For the purpose of testing, the information of the spatial processes must be summarized in a
reasonable way. Most often, test functions T (r) which depend on distance r (between two locations
or points) are employed for this purpose. Examples are estimators of well-known summary functions
such as the variogram, cross-variogram, Ripley’s K -function, mark-weighted K -function, multitype
K -function or the empty space function. In recent years, functions of the spatial position, such as
residual fields for spatial point patterns, have become popular for exploratory analysis. In Section 5,
we demonstrate how testing carries over to such functions with arguments in Rd.

Usually, the distributions of the test functions under the null hypotheses are not known explicitly.
Therefore, one resorts to the Monte Carlo method, comparing the observed estimated function T1(r)
to the distribution of T (r) under the null hypothesis, for r-values in some pre-chosen interval I ⊂ Rd.
Different strategies to make this comparison have been suggested in literature.

A very popular approach to checking the compatibility between data and a proposed model is
based on the so-called conventional envelope method (Ripley, 1977; Besag and Diggle, 1977), where
s simulations of the test function under the null model, T2(r), . . . , Ts+1(r), are produced and the
lower envelope Tlow(r) = mini=2,...,s+1 Ti(r) and the upper envelope Tupp(r) = maxi=2,...,s+1 Ti(r) are
computed. Finally T1 is comparedwith these envelopes. This procedure has becomewidely used, since
it gives a graphical interpretation indicating the distanceswhere the data function is not in accordance
with the null model, which information is important to understand reasons for rejection and to seek
for alternative models.

This procedure can, however, be used only as an exploratory tool (Baddeley et al., 2014): the
functions are inspected at many distances of the interval I simultaneously, whereas the type I error
of the test is controlled for a fixed r ∈ I only. Inspecting the functions on I leads to a serious
multiple testing problem. Thiswasmentioned already by Ripley (1977), but Loosmore and Ford (2006)
demonstrated that the type I error probability of this procedure can be unacceptably high. To express
the local significance of themethod, thismethod is often called the pointwise envelope (Baddeley et al.,
2014).

While Loosmore and Ford (2006) advised to avoid the envelope method for testing and
recommended to use instead deviation tests (Diggle, 1979), Grabarnik et al. (2011) showed that the
envelope test can be refined to a rigorous statistical tool.

The deviation test has been a popular way to handle the multiple testing problem. This test and
its advantages and disadvantages are recalled in Section 2. A global envelope test is a solution that
addresses shortcomings of both the pointwise envelope and the deviation test. It is a statistical test
that rejects the null hypothesis if the observed function T1 is not completely inside a global envelope
given by Tlow and Tupp, i.e. it rejects if there exists r ∈ I such that T1(r) ∉ (Tlow(r), Tupp(r)). A global
envelope test with appropriate type I error probability, namely the rank envelope test (Myllymäki
et al., 2016), is presented in Section 3.

Section 4 further gives answers to the most important issues connected with the usage of the rank
envelope test. Finally, Sections 5 and 6 present examples frompoint pattern analysis and geostatistics,
respectively. In the former section, both one- and two-dimensional test functions are used and in the
latter, the test function is two-dimensional, representing spatial residuals of a fitted model.

The proposed methods are provided in the R library spptest, which can be obtained at
https://github.com/myllym/spptest.

2. Deviation tests

The deviation test overcomes the multiple testing problem by summarizing the information
contained in T (r), r ∈ I , into a single number, u, and performing a univariate Monte Carlo test (Illian
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