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a b s t r a c t

We consider a stationary and isotropic spatial point process whose
realization is observed within a large window. We assume it to be
driven by a stationary random field U . In order to predict the local
intensity of the point process, λ(x|U), we propose to define the
first- and second-order characteristics of a random field, defined as
the regularized counting process, from the ones of the point process
and to interpolate the local intensity by using a kriging adapted to
the regularized process.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In many projects the study window is too large to extensively map the intensity of the point
process of interest since observation methods may be available at a much smaller scale only. That is
for instance the case when studying the spatial repartition of a bird species at a national scale, while
the observations are made in windows of few hectares. The intensity must then be estimated from
data issued out of samples spread in the study window, and hence, from a partial realization of the
point process in this window.

In the following, we consider a stationary and isotropic point process, Φ , which we assume to be
driven by a stationary random field,U . We define the local intensity ofΦ by its intensity conditional to
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the random field U . We denote it λ(x|U). A simple example of such a process Φ is the Thomas process
which is a Poisson cluster process where the cluster centers (parents) are assumed to be Poisson and
the offsprings are normally distributed around the parent point. This process is stationary and the
local intensity corresponds to the intensity of the inhomogeneous Poisson process of offsprings, i.e. the
conditional intensity given the parent process. We will refer to the estimation of the local intensity
when we want to the know it at point locations lying in the observation window of the point process,
and to its prediction when point locations are outside the observation window.

Usually, when estimating a non-constant intensity, we observe the full point pattern within a win-
dow and we want to know its local changes over a given mesh. This issue has been addressed in sev-
eral ways: kernel smoothing, see Silverman (1986) and Guan (2008) in presence of covariates, and van
Lieshout (2012) for a general class of weight function estimators that encompasses both kernel and
tessellation based estimators; or parametric methods; see for instance (Illian et al., 2008) for a review.
A recurrent and remaining question in these approaches is which bandwidth/mesh should we use?
This has been addressed by using cross-validation (Härdle, 1991) or double kernel (Devroye, 1989).

In contrast to the previous methods which look at the intensity changes inside the observation
window, our main interest lies in predicting the intensity outside the observation window, all the
morewhen it is not connected as it frequently happenswhen sampling in plant ecology. To predict the
intensity we could use (Tscheschel and Stoyan, 2006)’s reconstruction method based on the first- and
second-order characteristics of the point process. Once the empirical point pattern predicted within
a given window, one can get the intensity by kernel smoothing. As it is a simulation-based method,
it requires long computation times, especially when the prediction window is large and/or the point
process is complex. As alternative method, few authors model the point pattern by a point process
with the intensity driven by a stationary random field. In Diggle and Ribeiro (2007) and Diggle et al.
(2013), the approach is heavily based on a complete modeling and considers a log-Gaussian model.
The parameter estimation, the intensity estimation and its prediction outside the observationwindow
are obtained using a Bayesian framework. Themethod developed inMonestiez et al. (2006) and Bellier
et al. (2013) is close to classical geostatistics. Basically, it consists of counting the number of points
within some grid cells, computing the related empirical variogram and theoretically relating it to the
one obtained from the random field driving the intensity. Then, the variogram is fitted and kriging is
used to predict the intensity. Its advantage is that the estimation is only based on its first- and second-
order moments so that the model does not need to be fully specified. While this approach requires
less hypotheses, themodel remains constrainedwithin the class of Cox processes.Moreover, themesh
size is arbitrary defined. van Lieshout and Baddeley (2001) developed, for a wider class of parametric
models, a Bayesian approach for extrapolating and interpolating clustered point patterns.

Here,wepropose to interpolate the local intensity by an adapted kriging,where the krigingweights
depend on the local structure of the point process. Hence, our method uses all the data to locally
predict at a given point, which it is not the case of most of kernel methods. It also uses the information
at a fine scale of the point process, which it is not the case in geostatistical approaches. Furthermore, it
does not require a specificmodel but only (an estimation of) the first- and second-order characteristics
of the point process.

In Section 2 we define the regularized process as a random field of point counts on grid cells and
we link up the mean and variogram of this random field to the intensity and pair correlation function
of the point process. The kriging weights, the related interpolator and its properties are presented
in Section 3 as well as the optimal mesh of the interpolation grid. In Section 4 we use our kriging
interpolator to estimate and predict the intensity of Montagu’s Harriers’ nest locations in a region of
France. In Section 5, we discuss the influence of the mesh and the rate and shape of unobserved areas
on the statistical properties of our kriging interpolator from numerical results.

2. Linking up characteristics of two theories

2.1. About geostatistics

For any real valued random field Z(x), x ∈ R2, the first-order characteristic is the mean
value function: E [Z(x)] = m(x) and the second-order characteristics are classically described in
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