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We develop a multi-level restricted Gaussian maximum likelihood
method for estimating the covariance function parameters and
computing the best unbiased predictor. Our approach produces a
new set of multi-level contrasts where the deterministic param-
eters of the model are filtered out thus enabling the estimation
of the covariance parameters to be decoupled from the determin-
istic component. Moreover, the multi-level covariance matrix of
the contrasts exhibits fast decay that is dependent on the smooth-
ness of the covariance function. Due to the fast decay of the multi-
level covariance matrix coefficients only a small set is computed
with a level dependent criterion. We demonstrate our approach on
problems of up to 512,000 observations with a Matérn covariance
function and highly irregular placements of the observations. In ad-
dition, these problems are numerically unstable and hard to solve
with traditional methods.
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1. Introduction

Consider the following model for a Gaussian spatial random field Z:

Z(s) =m(s)' B + €(s), seRY, (1)

where m € RP is a known function of the spatial location s, 8 € RP is an unknown vector
of coefficients, and € is a stationary mean zero Gaussian random field with parametric covariance
function C(s, s’; ) = cov{e(s), €(s')} having an unknown vector # € R" of parameters. We observe
the data vector Z = (Z(s1), ..., Z(sy))" at locations S := {s, ..., s,}, wheres; # s, # s3 #£ ... #
Sn—1 # Sy, and wish to: 1) estimate the unknown vectors 8 and 6; and 2) predict Z(sg), where s is a
new spatial location. These two tasks are particularly challenging when the sample size n is large.

To address the estimation part, let C(f) = cov(Z, ZT) € R™" be the covariance matrix of Z and
assume it is nonsingular for all # € R™. Define M = (m(sl) .. m(sn))T € R™P and assume it is of
full rank, p. The model (1) leads to the vectorial formulation

Z=MB +e, (2)

where € is a Gaussian random vector, € ~ N, (0, C(#)). Then the log-likelihood function is

1 1
(B, 0) = —g log(2m) — 3 log det{C(0)} — 5(2 —MB)'C(6)"'(Z — MB), 3)
which can be profiled by generalized least squares with

B6) = (M'co) "M} 'M'c(9) 'z (4)

A consequence of profiling is that the maximum likelihood estimator (MLE) of @ then tends to
be biased. A solution to this problem is to use restricted maximum likelihood (REML) estimation
which consists in calculating the log-likelihood of n — p linearly independent contrasts, that is,
linear combinations of observations whose joint distribution does not depend on B, from the set
Y = {I, — M(M™M)~'M"}Z. In this paper, we propose a new set of contrasts that lead to significant
computational benefits (with good accuracy) when computing the REML estimator of @ for large
sample size n.

To address the prediction part, consider the best unbiased predictor 7 (s9) = Ao + N'Z where
L = (A1, ..., Ap)". The unbiasedness constraint implies Ay = 0 and M"\ = m(sy). The minimization
of the mean squared prediction error E[{Z(sg) — NTZ}?] under the constraint M'h = m(s,) yields

Z(so) = m(sp)"B + c(0)"C(6)"'(Z — MP), (5)

where ¢(@) = cov{Z,Z(sg)} € R" and ii is defined in (4). In this paper, we propose a new
transformation of the data vector Z leading to a decoupled multi-level description of the model
(1) without any loss of structure. This multi-level representation leads to significant computational
benefits when computing the kriging predictor Z (sg) in (5) for large sample size n.

Previous work has been performed to maximize (3). The classical technique is to compute a
Cholesky factorization of C. However, this requires © (n?) memory and ©(n®) computational steps,
thus is impractical for large scale problems.

Under special structures of the covariance matrix, i.e., fast decay of the covariance function, a
tapering technique can be used to sparsify the covariance matrix and thus increase memory and
computational efficiency (Furrer et al., 2006; Kaufman et al., 2008). These techniques are good when
applicable but tend to be restrictive. For a review of various approaches to spatial statistics for large
datasets, see Sun et al. (2012). Recently we have seen the advent of solving the optimization problem
(3) from a computational numerical perspective. Anitescu et al. (2012) developed a matrix-free
approach for computing the maximum of the log-likelihood (3) based on a stochastic programming
reformulation. This method relies on Monte Carlo approximation of the derivative of the score
function with respect to the covariance parameters # to compute the maximization (3). The authors
show promising results for a grid geometry of the placement of the observations. However for a non-
grid geometry the cost of computing the preconditioner becomes © (n?) and it is not clear how many
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