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a b s t r a c t

We develop a multi-level restricted Gaussian maximum likelihood
method for estimating the covariance function parameters and
computing the best unbiased predictor. Our approach produces a
new set of multi-level contrasts where the deterministic param-
eters of the model are filtered out thus enabling the estimation
of the covariance parameters to be decoupled from the determin-
istic component. Moreover, the multi-level covariance matrix of
the contrasts exhibits fast decay that is dependent on the smooth-
ness of the covariance function. Due to the fast decay of the multi-
level covariance matrix coefficients only a small set is computed
with a level dependent criterion.We demonstrate our approach on
problems of up to 512,000 observations with a Matérn covariance
function and highly irregular placements of the observations. In ad-
dition, these problems are numerically unstable and hard to solve
with traditional methods.
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1. Introduction

Consider the following model for a Gaussian spatial random field Z:

Z(s) = m(s)Tβ + ϵ(s), s ∈ Rd, (1)

where m ∈ Rp is a known function of the spatial location s, β ∈ Rp is an unknown vector
of coefficients, and ϵ is a stationary mean zero Gaussian random field with parametric covariance
function C(s, s′; θ) = cov{ϵ(s), ϵ(s′)} having an unknown vector θ ∈ Rw of parameters. We observe
the data vector Z = (Z(s1), . . . , Z(sn))T at locations S := {s1, . . . , sn}, where s1 ≠ s2 ≠ s3 ≠ · · · ≠
sn−1 ≠ sn, and wish to: 1) estimate the unknown vectors β and θ; and 2) predict Z(s0), where s0 is a
new spatial location. These two tasks are particularly challenging when the sample size n is large.

To address the estimation part, let C(θ) = cov(Z, ZT) ∈ Rn×n be the covariance matrix of Z and
assume it is nonsingular for all θ ∈ Rw . Define M =


m(s1) . . .m(sn)


T
∈ Rn×p and assume it is of

full rank, p. The model (1) leads to the vectorial formulation

Z = Mβ + ϵ, (2)

where ϵ is a Gaussian random vector, ϵ ∼ Nn(0, C(θ)). Then the log-likelihood function is

ℓ(β, θ) = −
n
2
log(2π)−

1
2
log det{C(θ)} −

1
2
(Z−Mβ)TC(θ)−1(Z−Mβ), (3)

which can be profiled by generalized least squares with

β̂(θ) = {MTC(θ)−1M}−1MTC(θ)−1Z. (4)

A consequence of profiling is that the maximum likelihood estimator (MLE) of θ then tends to
be biased. A solution to this problem is to use restricted maximum likelihood (REML) estimation
which consists in calculating the log-likelihood of n − p linearly independent contrasts, that is,
linear combinations of observations whose joint distribution does not depend on β, from the set
Y = {In − M(MTM)−1MT

}Z. In this paper, we propose a new set of contrasts that lead to significant
computational benefits (with good accuracy) when computing the REML estimator of θ for large
sample size n.

To address the prediction part, consider the best unbiased predictor Ẑ(s0) = λ0 + λTZ where
λ = (λ1, . . . , λn)

T. The unbiasedness constraint implies λ0 = 0 andMTλ = m(s0). Theminimization
of the mean squared prediction error E[{Z(s0)− λTZ}2] under the constraint MTλ = m(s0) yields

Ẑ(s0) = m(s0)Tβ̂ + c(θ)TC(θ)−1(Z−Mβ̂), (5)

where c(θ) = cov{Z, Z(s0)} ∈ Rn and β̂ is defined in (4). In this paper, we propose a new
transformation of the data vector Z leading to a decoupled multi-level description of the model
(1) without any loss of structure. This multi-level representation leads to significant computational
benefits when computing the kriging predictor Ẑ(s0) in (5) for large sample size n.

Previous work has been performed to maximize (3). The classical technique is to compute a
Cholesky factorization of C. However, this requires O(n2) memory and O(n3) computational steps,
thus is impractical for large scale problems.

Under special structures of the covariance matrix, i.e., fast decay of the covariance function, a
tapering technique can be used to sparsify the covariance matrix and thus increase memory and
computational efficiency (Furrer et al., 2006; Kaufman et al., 2008). These techniques are good when
applicable but tend to be restrictive. For a review of various approaches to spatial statistics for large
datasets, see Sun et al. (2012). Recently we have seen the advent of solving the optimization problem
(3) from a computational numerical perspective. Anitescu et al. (2012) developed a matrix-free
approach for computing the maximum of the log-likelihood (3) based on a stochastic programming
reformulation. This method relies on Monte Carlo approximation of the derivative of the score
function with respect to the covariance parameters θ to compute the maximization (3). The authors
show promising results for a grid geometry of the placement of the observations. However for a non-
grid geometry the cost of computing the preconditioner becomes O(n2) and it is not clear howmany
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